Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc = 1 => a3b3c3=1
<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)
Áp dụng BĐT cauchy cho 3 số dương ta có :
\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)
Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)
\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)
\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)
Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)
Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D
lại đây nào , hằng đẳng thức quen thuộc của chúng ta ơi: \(a^2+b^2+c^2\ge ab+bc+ca\)( cái này dễ chứng minh nha bạn, bạn có thể nhân hai vế với 2 hoặc tra mạng là có ngay nha). và chúng ta sẽ áp dụng công thức này vào biểu thức bên dưới
1 \(a^4+b^4+c^4=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\) \(\ge a^2b^2+b^2c^2+c^2a^2\ge ab^2c+abc^2+a^2bc\)\(=abc\left(a+b+c\right)\)
từ đẳng thức ta có đpcm
2 \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\)\(\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4\)\(+a^4b^2c^2\)
\(=a^2b^2c^2\left(b^2+c^2+a^2\right)\)\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)
từ đẳng thức ta có đpcm
trong suốt quá trình giải bài toán mình đều sử dụng công thức bên trên nhé. chúc bạn học tốt. kb và tk mk
a) a2 + b2 + c2 ≥ ab + bc + ca
Nhân 2 vào từng vế của bất đẳng thức
<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
b) a2 + b2 + c2 + 3 ≥ 2( a + b + c )
<=> a2 + b2 + c2 + 3 ≥ 2a + 2b + 2c
<=> a2 + b2 + c2 + 3 - 2a - 2b - 2c ≥ 0
<=> ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + ( c2 - 2c + 1 ) ≥ 0
<=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)