K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Ta có:

\(\left\{\begin{matrix}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(1\right)\)

Lại có:

\(\left\{\begin{matrix}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{matrix}\right.\)

Cộng vế với vế ta lại được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow1< A< 2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên (Đpcm)

13 tháng 3 2017

Số tự nhiên mà bạn ???

11 tháng 3 2017

Ta có:\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

Lại có: \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+b+c+c+a}{a+b+c}\)

\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\). Từ \((1)\)\((2)\) ta có:

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\) (Không là số nguyên)

11 tháng 3 2017

Ta có :\(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+b}< \dfrac{b+a}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\)\(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

\(\Rightarrow\)ĐPCM

27 tháng 4 2023

Với a,b,c dương, ta có:

a/a+b > a/a+b+c

b/b+c > b/a+b+c

c/c+a > c/a+b+c

=> A > a/a+b+c + b/a+b+c + c/a+b+c => A>1.               (1)

Ta lại có

A = a/a+b + b/b+c + c/c+a

   = a+b-b/a+b + b+c-c/b+c + c+a-a/c+a

   = 1-b/a+b + 1-c/b+c + 1-a/c+a

   = 3-(b/a+b + c/b+c + a/c+a) = 3-B

Tương tự phần chứng minh trên, ta có

b/a+b > b/a+b+c

c/b+c > c/a+b+c

a/a+c > a/a+b+c

=> B > b/a+b+c + c/a+b+c + a/a+b+c => B>1

mà A = 3-B

=> A < 2                                                           (2)

Từ (1) và (2) => 1<A<2

Mà không có số tự nhiên nào ở giữa 1 và 2 => A không là số tự nhiên

 

1 tháng 4 2017

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

1/9 + 1/10 + 1/11 <3x1/9 = 1/3

1/12 + 1/13 +1/14 < 3x1/12 = 1/4

1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.leu

1 tháng 4 2017

Bít lm từ lâu ồileu

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.

17 tháng 3 2017

ta có:\(\dfrac{a}{b}< \dfrac{c}{d}=>a.d< c.b\)

ad+ab<cb+ab

hay a.(d+b)<b.(c+a)

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)(1)

ad<cb

=>ad+dc<bc+cd

d.(a+c)<c.(b+d)

=>\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(2)

từ (1) và (2) ta có :

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)\(< \dfrac{c}{d}\)

Tick đi ahihi :D

17 tháng 3 2017

nếu thì ???????????????????

gianroi

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

5 tháng 3 2018

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

5 tháng 3 2018

CM :        1 < M < 2 

27 tháng 4 2017

Giải:

\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)

Không giảm tính tổng quát

Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m+b}{b+m}=1+1=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)

Nhận xét:

Trong một BĐT có chứa chữ, nếu các chữ \(a\)\(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.

27 tháng 4 2017

Thiếu đk ab > 0.

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2=2ab\)

Vì ab > 0

\(\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a^2}{ab}+\dfrac{b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)