Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoặc
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
a2
Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:
đây là phép cộng không phải phép nhân
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
Cho a,b,c,d là các số tự nhiên khác 0 thỏa mãn a 2 + b2 = c2 +d2. Chứng minh rằng a+b+c+d là hợp số.
a2 + b2 = c2 + d2
\(\Rightarrow\)a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) \(⋮\)2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) \(⋮\)2
\(\Rightarrow\)a + b + c + d \(⋮\)2 nên cũng là hợp số
-Nhận xét : Ta thấy rằng với mọi số nguyên a ; b ; c thì biểu thức | a - b | + | b- c| + | c - a | đều là số dương ⇒ Biểu thức 2018d + 2019 cũng là số dương ⇒ có 3 trường hợp :
TH1 : d < 0 ⇒ d là số âm ⇒ (Loại)
TH2 : d > 0 ⇒ 2018d là số dương ⇒ 2018d + 2019 là số âm ⇒ ( loại)
TH3 : d = 0 ⇒ 2018d + 2019 là số dương ⇒ ( thỏa mãn )
Vậy chỉ có d = 0 thỏa mãn