Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm đc là phải tịk nha!
a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0
Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1
Cho các số dương a,b,c không âm
Và a+b+c=1
Chứng minh (1-a)(1-b)(1-c)lớn hơn bằng 8abc
Giúp mk với nha!
A = ab + bc + cd < ab + ad + bc + cd = ( a + c ) ( b + d )
Áp dụng bất đẳng thức xy < (\(\frac{x+y}{2}\) )2 ta có
A = ( a+ c ) ( b+ d ) < ( \(\frac{a+c+b+d}{2}\) )2 = \(\frac{1}{4}\)
A = \(\frac{1}{4}\) \(\Leftrightarrow\) \(\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\)
Vậy max A = \(\frac{1}{4}\) khi a= b = \(\frac{1}{2}\) , c = d = 0
Lần sau nhớ viết đề kĩ hơn nha:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) và a, b, c > 0
Giả sử \(a\ge b\ge c>0\Rightarrow a+b\ge a+c\ge b+c\)
\(\text{Do đó: }a\ge b\ge c\text{ và }\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng BĐT Chebyshev cho hai dãy đơn điệu cùng chiều ta thu được:
\(3\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Nhân 2 vào hai vế tách ra rồi dùng AM - GM tiếp tục vào vế phải rồi từ đó suy ra đpcm:)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) ( 1 )
Có BĐT phụ:\(\left(a+b+c\right)^2\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
Áp dụng vào ( 1 ) ta có:
\(A\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c>0\)
P/S:Có tới 45 cách CM bài toán này,bạn lên google có đầy.
\(A=ab+bc+cd\le ab+ad+bc+cd=\left(a+c\right)\left(b+d\right)\)
Áp dụng bất đẳng thức \(xy\le\left(\frac{x+y}{2}\right)^2\) ta có :
\(A=\left(a+c\right)\left(b+d\right)\le\left(\frac{a+c+b+d}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{4}\Leftrightarrow\begin{cases}a+c=\frac{1}{2}\\b+d=\frac{1}{2}\\ad=0\\a,b,c,d\ge0\end{cases}\)
Vậy \(Max_A=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2},c=d=0\)
Không mất tính tổng quát , giả sử \(a\ge b\ge c\ge d\)
Khi đó : \(A=ab+bc+cd\le ab+ac+ad=a\left(b+c+d\right)=a\left(1-a\right)\)
Mà \(a\left(1-a\right)=-a^2+a=-\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra \(A\le\frac{1}{4}\).
Vậy MaxA = 1/4
(Với cách này không cần chỉ ra đẳng thức xảy ra vẫn được :)
Qúa dễ luôn
Ta có : a x 2 + b x 2 + c x 2 \(\le\) 5
2 x ( a + b + c ) \(\le\)5
a + b + c \(\le\) 5/2
a + b + c \(\le\) 2,5
Mà theo đề bài : a + b + c không lớn hơn 2 ( có nghĩa là bé hơn 2 ) . Nên a + b + c phải luôn luôn bé hơn 2,5 ( vì 2 luôn bé hơn 2,5 )
Vậy : a x 2 + b x 2 + c x 2 \(\le\) 5
Áp dụng BĐT cô si cho 2 số không âm
\(b+c\ge2\sqrt{bc}\)
<=>\(\left(b+c\right)^2\ge4bc\) (1)
Áp dụng BĐT cô si cho 2 số không âm
\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
<=>\(1\ge4a\left(b+c\right)\) (2)
nhân (1) với (2) ta đc
\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)
<=>\(b+c\ge16abc\) (đpcm)
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)
:"here