K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)

Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).

Đẳng thức xảy ra khi \(a=b=c=2\)

Vậy \(minP=42\)

NV
19 tháng 9 2021

Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)

15 tháng 11 2021

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

\(A=a+b=12-2ab\ge12-2\frac{\left(a+b\right)^2}{4}=12-\frac{A^2}{2}\)

Vậy \(A^2+2A-24\le0\)

\(-6\le A\le4\)

Vậy \(A_{min}=-6\)

1 tháng 3 2020

\(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow b=\frac{2ac}{a+c}\)

ta có: \(P=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}+\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}\)

\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=1+\frac{3}{2}\left(\frac{c}{a}+\frac{a}{c}\right)\ge1+\frac{3}{2}\cdot2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}=4\)

Dấu "=" xảy ra khi a=b=c

16 tháng 9 2023

Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Rightarrow bc+ca=2ca\)

\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)

\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)

Ta có :

\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)

Áp dụng bđt cô si cho 2 số dương

\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)

\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

28 tháng 5 2021

Ta có \(12=a+b+2ab\le a+b+\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)-24\ge0\Leftrightarrow\left(a+b+6\right)\left(a+b-4\right)\ge0\Leftrightarrow a+b\ge4\) (Do a + b + 6 > 0)

Dấu "=" xảy ra khi a = b = 2.