Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)
\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)
Tương tự với các biểu thức còn lại, kết hợp với
\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)
là được đáp án.
\(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)
\(P=a-\frac{2abc}{a^2+2bc}+b-\frac{2abc}{b^2+2ca}+c-\frac{2abc}{c^2+2ab}+3abc\)
\(P=\left(a+b+c\right)-2abc\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)+3abc\)
\(P=3-2abc\left(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\right)+3abc\)(Do a+b+c=3)
Áp dụng BĐT Schwarz cho 3 phân số:
\(\frac{1}{a^2+2abc}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)
\(=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{3^2}=1\)
\(\Rightarrow P\le3-2abc+3abc=3+abc\)
Áp dụng BĐT Cauchy cho 3 số a,b,c: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)
\(\Rightarrow P\le3+1=4\).
Vậy \(Max_P=4.\)Đẳng thức xảy ra khi a=b=c=1.
Đợi chút; phần áp dụng BĐT schwarz, cái đầu tiên mình gõ thừa chữ "c" ở mẫu thức, bn sửa đi nhé.
\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).
Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+c^2\ge2ac\).
\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).
\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)
\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).
\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).
\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)
\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .
Chứng minh tương tự, ta được:
\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)
Chứng minh tương tự, ta dược:
\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).
\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).
Mà \(ab+bc+ca=3abc\)(theo đề bài).
Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).
\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).
\(\Leftrightarrow K\ge\frac{3}{2}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).
Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).
Ta có : \(a+b^2⋮a^2b-1\) suy ra \(a+b^2=k\left(a^2b-1\right)\left(k\in N^{sao}\right)\)
\(\Leftrightarrow a+k=b\left(ka^2-b\right)\) hay \(mb=a+b\left(1\right)\) với \(m=ka^2-b\in Z^+\)
\(\Leftrightarrow m+b=ka^2\left(2\right)\)
Từ (1) và (2) suy ra \(mb-m-b+1=a+b-ka^2+1\)
\(\Leftrightarrow\left(m-1\right)\left(b-1\right)=\left(a+1\right)\left(k+1-ka\right)\left(3\right)\)
Vì \(m,b\in Z^+\Rightarrow\left(m-1\right)\left(b-1\right)\ge0\)
Do đó từ (3) suy ra \(\left(a+1\right)\left(k+1-ka\right)\ge0\)
Lại vì a > 0 nên suy ra \(k+1-ka\ge0\Rightarrow1\ge k\left(a-1\right)\)
Vì \(a-1\ge0,k>0\) nên \(1\ge k\left(a-1\right)\ge0\)
Mà \(k\left(a-1\right)\in Z\)
\(\Rightarrow k\left(a-1\right)=0\) hoặc \(k\left(a-1\right)=1\)
=> a=1 hoặc \(\left\{{}\begin{matrix}a=2\\k=1\end{matrix}\right.\)
- Với a=1 thay vào (3) ta có:(m-1)(b-1)=2
\(\Leftrightarrow\left\{{}\begin{matrix}b-1=1\\m-1=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b-1=2\\m-1=1\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}b=2\\m=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b=3\\m=2\end{matrix}\right.\)
TH b=2,m=3 suy ra 5=ka2 => a=1
TH b=3,m=2 => a=1
- Với a=1, k=1 thay vào (3): (m-1)(b-1)=0 <=> m=1 hoặc b=1
TH b=1 => a=2
TH m=1, từ (1) => a+k=b => b=3 => a=2
Vậy 4 cặp số (a;b) thỏa mãn là (1;2);(1;3);(2;3);(2;1)
Đặt \(x=1-a\), \(y=1-b\), \(z=1-c\)
Ta có : \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\)
\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)
\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)
Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cần chứng minh: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)
Thật vậy: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\Leftrightarrow\left(4b-a\right)\left(ab+5b^2\right)-19b^3+a^3\ge0\)
\(\Leftrightarrow4ab^2+20b^3-a^2b-5ab^2-19b^3+a^3\ge0\)
\(\Leftrightarrow\left(a^3+b^3\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)
"=" khi a=b
Tương tự: \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b;\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)
Cộng theo vế:
\(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le4b-a+4c-b+4a-c=3\left(a+b+c\right)=3\)
Dấu "=" xảy ra khi a=b=c=1/3
Ta có:
\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)
\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)
\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)
\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Lại có:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)
\(\)