K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2021

\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)

\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)

Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:

\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)

\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)

\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)

18 tháng 9 2021

thầy ơi, sao chỗ Do abc = 8 ⇒ a2b2c= 64 lại suy ra các số thực dương x;y;z tồn tại được ạ? 

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 12 2018

cảm ơn nhiều nhé

31 tháng 3 2017

Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:

\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng hai bất đẳng thức ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

25 tháng 12 2019

:)

We have:

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\Sigma_{cyc}\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}\ge\frac{\left[2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\right]^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Now we let's verify

\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\)

Consider

\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)

Sign '=' happening when \(a=b=c=1\)

11 tháng 4 2017

Từ \(abc+a+b=3ab\Leftrightarrow c+\dfrac{1}{a}+\dfrac{1}{b}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)\rightarrow\left(x;y\right)\left(x;y>0\right)\Rightarrow c+x+y=3\)

BĐT cần chứng minh là:

\(\sqrt{\dfrac{1}{x+y+xy}}+\sqrt{\dfrac{1}{y+a+ay}}+\sqrt{\dfrac{1}{x+a+ax}}\ge\sqrt{3}\)

Áp dụng BĐT AM-GM ta có:

\(VT\ge3\sqrt[6]{\dfrac{1}{\left(x+y+xy\right)\left(x+a+ax\right)\left(a+y+ay\right)}}\ge\sqrt{3}\)

\(\Leftrightarrow (x+y+xy)(x+a+ax)(a+y+ay)\leq \frac{1}{27}\)

BĐT này luôn đúng vì ta có 2 BĐT phụ sau luôn đúng theo AM-GM \(mnp\le\left(\dfrac{m+n+p}{3}\right)^3;mn+np+mp\le\dfrac{\left(m+n+p\right)^2}{3}\)

Ok. Done ! :dreamer:

11 tháng 4 2017

quả nhiên đề bị sai =))

AH
Akai Haruma
Giáo viên
2 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến