K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

Sửa đề : ( a + b ) ( b + c ) ( c + a ) = 8abc 

Giải :

Áp dụng bất đẳng thức AM - GM cho 2 số dương , ta có :

\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\) 

Nhân vế với vế của 3 bất đẳng thức trên ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu bằng xảy ra khi và chỉ khi a = b = c

28 tháng 10 2020

Vì a,b,c là các số thực dương

nên áp dụng bất đẳng thức Cauchy ta có :

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế với vế

=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8\left|abc\right|=8abc\)

( do a,b,c là các số thực dương )

Đẳng thức xảy ra <=> a = b = c

=> đpcm

2 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 số dương a;b;c ta có :

\(a+b\ge2\sqrt{ab}\) (dấu "=" xảy ra \(\Leftrightarrow a=b\) )

\(b+c\ge2\sqrt{bc}\) (dấu "=" xảy ra \(\Leftrightarrow b=c\) )

\(c+a\ge2\sqrt{ca}\) (dấu "=" xảy ra \(\Leftrightarrow a=c\) )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8abc\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 3 2018

1) xét hiệu

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)

<=> \(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}-\dfrac{4ab}{ab\left(a+b\right)}\ge0\)

=> b(a+b)+a(a+b)-4ab ≥ 0

<=> ab+b2+a2+ab-4ab ≥ 0

<=> a2 -2ab+b2 ≥ 0

<=> (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

25 tháng 3 2018

2)Ta có:\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

TT\(\Rightarrow\left(b+c\right)^2\ge4bc;\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

26 tháng 4 2016

áp dụng bất đẳng thức cô si ta có

(a+b)(b+c)(c+a) >= \(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{\left(abc\right)^2}=8abc\)

dấu = xảy ra <=> a=b=c

vậy (a+b)...=8abc <=> a=b=c

27 tháng 5 2019

Xét hiệu hai vế \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc=0\)  (1)

Mà ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc=a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)

\(\Rightarrow\) a = b = c. (đpcm)

23 tháng 4 2017

tui làm đc là phải tịk nha!

a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0

23 tháng 4 2017

Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1

22 tháng 4 2017

Số abc là 176

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2