Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2ab+6bc+2ac=7abc\Rightarrow\frac{6}{a}+\frac{2}{b}+\frac{2}{c}=7\)
\(A=\frac{4}{\frac{1}{b}+\frac{2}{a}}+\frac{9}{\frac{1}{c}+\frac{4}{a}}+\frac{4}{\frac{1}{b}+\frac{1}{c}}\ge\frac{\left(2+3+2\right)^2}{\frac{1}{b}+\frac{2}{a}+\frac{1}{c}+\frac{4}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{49}{\frac{6}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{49}{7}=7\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=c=1\end{matrix}\right.\)
Hình như đề bài có vấn đề : thừa đk ab + bc + ac = abc
ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\)
Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)
\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)
\(\frac{1}{a}\ge1-\frac{2}{2b+1}+1-\frac{3}{3c+2}=\frac{2b-1}{2b+1}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\)
Tương tự: \(\frac{2}{2b+1}\ge\frac{a-1}{a}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\)
\(\frac{3}{3c+2}\ge\frac{a-1}{a}+\frac{2b-1}{2b+1}\ge2\sqrt{\frac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\)
Nhân vế với vế:
\(\frac{6}{a\left(2b+1\right)\left(3c+2\right)}\ge\frac{8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)}{a\left(2b+1\right)\left(3c+2\right)}\)
\(\Rightarrow\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\frac{3}{4}\)
\(P=\sqrt{c\left(a+b\right)}+\frac{\sqrt[3]{8.8.\left(2b+3c\right)}}{4}\)
\(\le\frac{c+a+b}{2}+\frac{8+8+2b+3c}{12}=\frac{6a+8b+9c+16}{12}\le\frac{32+16}{12}=4\)