Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)
Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)
\(\Leftrightarrow ab=ac+bc\)
\(\Leftrightarrow ab=c\left(a+b\right)\)
\(\Leftrightarrow abc=c^2\left(a+b\right)\)
Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !
Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)
\(\Rightarrow a-b⋮d\)
Mà \(\left(a;b\right)=1\)
\(\Rightarrow d=1\)
Hay \(\left(a-c;b-c\right)=1\)
Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường
Nên a - c và b - c đều là số chính phương
Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)
\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)
\(\Leftrightarrow x^2y^2=c^2\)
\(\Leftrightarrow xy=c\)( Do xy và c đều dương )
Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)
\(\Leftrightarrow a+b-2c=x^2+y^2\)
\(\Leftrightarrow a+b=x^2+2c+y^2\)
\(\Leftrightarrow a+b=x^2+2xy+y^2\)
\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương
Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương
Vậy .................