Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)
\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Cách 2:
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)
Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)
\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)
Đúng theo BĐT Schur bậc 3.
P/s: Em không chắc ở cách 2.
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)
\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)
Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé.
\(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\
\Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\
\Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\
\Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:
\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)
Suy ra (1) được chứng minh
Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3
---- Tick cho mình với -----
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Đồng bậc : \(BDT\Leftrightarrow9abc+2\left(a+b+c\right)^3\ge7\left(ab+bc+ca\right)\left(a+b+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(c-a\right)^2\ge0\)( đúng)\(\Rightarrow DPcm\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)