K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2019

Lời giải:

Xét hiệu:

\((a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-9\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1-9\)

\(=\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{b}{c}+\frac{c}{b}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)\)

\(=\frac{(a-b)^2}{ab}+\frac{(b-c)^2}{bc}+\frac{(c-a)^2}{ca}\geq 0, \forall a,b,c>0\)

\(\Rightarrow (a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

5 tháng 5 2019

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)

Dấu " = " xảy ra <=> a=b=c

Akai Haruma: sao thầy không dùng BĐT AM-GM cho nhanh vậy ạ?

4 tháng 5 2016

Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\),rồi thya vào dễ rồi!

14 tháng 9 2020

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\)

Nhân theo vế hai bất đẳng thức cùng chiều trên ta được :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=3.3=9\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

12 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

5 tháng 4 2017

(a+b+c)(1/a+1/b+1/c) = 1+ a/b + a/c + b/a + 1 + b/c + c/a + c/b + 1

= 3 + (a/b+b/a) + (c/a+a/c) + (b/c+c/b)   (1)

(ở đây mình sẽ chứng minh a/b + b/a >=2)

có: a/b + b/a - 2 = (a^2 + b^2 - 2ab)/ab = ((a-b)^2)/ab

có: (a-b)^2 >= 0; a,b đều là các số dương => a.b >= 0

vậy a/b + b/a -2 >=0

<=> a/b + b/a >= 2

chứng minh tương tự, ta có (c/a+a/c) >=2, (b/c+c/b) >=2

vậy (1) >= 3 + 2 +2 +2 = 9 (đpcm)