Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\Rightarrow}\hept{\begin{cases}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+x}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}=\frac{y}{2x}+\frac{z}{2x}+\frac{x}{2y}+\frac{z}{2y}+\frac{y}{2z}+\frac{x}{2z}\)Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge2.\sqrt{\frac{y}{2x}.\frac{x}{2y}}+2.\sqrt{\frac{z}{2x}.\frac{x}{2z}}+2.\sqrt{\frac{y}{2z}.\frac{z}{2y}}=1+1+1=3\)
Dấu " = " xảy ra <=> a=b=c
\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{c+a}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
bạn tự c/m: \(\frac{a}{b}< \frac{a+c}{b+c}\left(b>a>0;c>0\right)\)
\(\Rightarrow\frac{a}{b+c}>\frac{2a}{a+b+c};\frac{b}{c+a}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1) và (2)
\(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
đpcm
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))
Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)
Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)
https://olm.vn/hoi-dap/detail/12121415915.html
vô đi rồi k cho mk
Ta co:
\(\frac{a^2}{ab+ca-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+bc-c^2}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=3\)
Dau '=' xay ra khi \(a=b=c\)
Do a;b;c là 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)
Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)
Gọi \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(\Rightarrow2A=\frac{\left(y+z\right)}{x}+\frac{\left(x+z\right)}{y}+\frac{\left(x+y\right)}{z}\)
\(=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
Rồi dùng Cô-si
\(\Rightarrow2A\ge6\)
\(\Leftrightarrow A\ge3\)
Dấu = xảy ra khi a=b=c
2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{b}{c+a}< \frac{b}{b+c}\); \(\frac{c}{a+b}< \frac{c}{b+c}\); \(\frac{a}{b+c}< 1\)
\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)
b) Đặt \(x=b+c-a\); \(y=c+a-b\); \(z=a+b-c\);
Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\). \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\); \(\frac{y}{z}+\frac{z}{y}\ge2\); \(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)
hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)
Ta có :\(2\sqrt{\frac{b+c-a}{a}}\le\frac{b+c-a}{a}+1=\frac{b+c}{a}\)
<=> \(\sqrt{\frac{a}{b+c-a}}\ge\frac{2a}{b+c}\)
\(CMTT\)=> \(\sqrt{\frac{b}{c+a-b}}\ge\frac{2b}{c+a}\)
\(\sqrt{\frac{c}{a+b-c}}\ge\frac{2c}{a+b}\)
=>\(VT\)\(\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\)
\(CM\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
=> \(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3\)
=>\(VT\ge3\)
b)\(\Sigma\frac{a}{b+c-a}=\Sigma\frac{a^2}{ab+bc-a^2}\)\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)(BĐT Svarxơ)\(\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2-\frac{1}{3}\left(a+b+c\right)^2}\)(BĐT Bunhiacopxki)\(=3\)(đpcm)
a)\(\Sigma\frac{a}{b+c}=\Sigma\frac{a^2}{ab+bc}\)\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)\(\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=1,5>1\)
"~" toán 8 khó quá !