\(ac-a-c=b^2-2b,bd-b-d=c^2-2c\)

chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Đề bài cho a,b,c,d khác 1 phải không?

Vì ac –a-c =b2-2b nên ac–a-c +1=b2-2b+1 hay (a-1).(c-1) =(b-1)2

suy ra: (a-1)/(b-1) =(b-1)/(c-1).  (1)

Tương tự ta có (b-1).(d-1) =(c-1)2 suy ra: (b-1)/(c-1) =(c-1)/(d-1)  (2)

Từ (1) và (2) suy ra: (a-1)/(b-1) = (c-1)/(d-1) = (a+c-2)/(b+d-2)=(a-c)/(b-d)

Suy ra : (a+c-2). (b-d) = (b+d-2).(a-c)

Khai triển, chuyển vế và rút gọn được: 2bc+2a+2d= 2ad +2b+2c

Suy ra: ad +b+c= bc+a+d

5 tháng 1 2018

Hình như điều kiện là a, b, c, d khác 1 mới đúng

\(\left\{{}\begin{matrix}ac-a-c=b^2-2b\\bd-b-d=c^2-2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac-a-c+1=b^2-2b+1\\bd-b-d+1=c^2-2c+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\\\left(b-1\right)\left(d-1\right)=\left(c-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\left(1\right)\\\left(c-1\right)^2=\left(b-1\right)\left(d-1\right)\left(2\right)\end{matrix}\right.\)

Do a, b, c, d khác 1 nên lấy (2) : (1) vế theo vế ta được

\(\Rightarrow\dfrac{c-1}{a-1}=\dfrac{d-1}{b-1}\)

\(\Rightarrow\left(c-1\right)\left(b-1\right)=\left(a-1\right)\left(d-1\right)\)

\(\Leftrightarrow bc-b-c+1=ad-a-d+1\)

\(\Leftrightarrow ad+b+c=bc+a+d\) (ĐPCM)

P/S: Nếu đk không phải là a, b, c, d khác 1 thì xét a,b,c,d bằng 1 thì dễ suy ra đpcm, sau đó xét a,b,c,d khác 1 thì giải như trên

30 tháng 1 2017

tuong tự [Toán 11] Tính giá trị của biểu thức | HOCMAI Forum - Cộng đồng học sinh Việt Nam

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Đặt biểu thức đã cho là $A$.
Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\geq 2\sqrt{(a^2+b^2)(c^2+d^2)}\)

Mà:
\((a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=(ac-bd)^2+(ad+bc)^2=1+(ad+bc)^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 2\sqrt{1+(ad+bc)^2}\)

\(\Rightarrow A\geq 2\sqrt{1+(ad+bc)^2}+ad+bc\). Đặt $ad+bc=t$ thì: $A\geq 2\sqrt{t^2+1}+t$.

Áp dụng BĐT Bunhiacopxky:

\((t^2+1)\left[(\frac{-1}{2})^2+(\frac{\sqrt{3}}{2})^2\right]\geq (\frac{-t}{2}+\frac{\sqrt{3}}{2})^2\)

\(\Leftrightarrow \sqrt{t^2+1}\geq |\frac{-t}{2}+\frac{\sqrt{3}}{2}|\)

\(\Rightarrow A\geq 2\sqrt{t^2+1}+t\geq 2|\frac{-t}{2}+\frac{\sqrt{3}}{2}|+t\geq 2(\frac{-t}{2}+\frac{\sqrt{3}}{2})+t=\sqrt{3}\) (đpcm)

17 tháng 5 2020

Dấu bằng xảy ta khi nào vậy bạn

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.