K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Giúp mk với mọi người

13 tháng 8 2020

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)

13 tháng 8 2020

Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

                                                                                                                 \(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)

=> x = 1/2 

Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)

=> y = 5/6

Lại có x + y + z = 1/2

=> 1/2 + 5/6 + z = 1/2

=> 5/6 + z = 0

=> z = -5/6

Khi đó A = 2016X + y2017 + z2017

= 2016.1/2 + (5/6)2017 - (5/6)2017

= 1008

Vậy A = 1008

11 tháng 4 2016

\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)\(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\)     = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)

=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)

9 tháng 3 2020

                                                              Bài giải

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y-1\right|\ge0\\\left(x+y-z-2\right)^{2016}\ge0\end{cases}}\)\(\left|x-2\right|+\left|y-1\right|+\left(x+y-z-2\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|y-1\right|=0\\\left(x+y-z-2\right)^{2016}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=0\\y-1=0\\x+y-z-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\\x+y-z=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\\2+1-z=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=1\\z=1\end{cases}}\)

\(\Rightarrow\text{ }x=2\text{ ; }y=z=1\)

9 tháng 3 2020

Vì \(|x-2|\ge0,\forall x\)

\(|y-1|\ge0,\forall y\)

\(\left(x+y-z-2\right)^{2016}\ge0,\forall x,y,z\)

suy ra \(|x-2|+\)\(|y-1|+\)\(\left(x+y-z-2\right)^{2016}\ge0,\forall x,y,z\)  (1)

mà \(|x-2|+\)\(|y-1|+\)\(\left(x+y-z-2\right)^{2016}=0\) (2)

Từ (1) và (2) suy ra \(|x-2|=0\)và \(|y-1|=0\)và \(\left(x+y-z-2\right)^{2016}=0\)

suy ra x=2 và y = 1 và z = 1

Vậy A = 5. 4 . 1. 2016. 1. 2017=81325440

10 tháng 3 2020

bài này dễ vào TH 0,5 điểm trong bài thi

nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)

áp dụng t/c dãy t/s = nhau

\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)

biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé

10 tháng 4 2022

casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp