Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :
\(\frac{\sqrt{b^2+2a^2}}{ab}\)= \(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)
Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)
=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)+ \(\frac{\sqrt{c^2+2b^2}}{bc}\)+ \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)
= \(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)
Dấu "=" xảy ra <=> a=b=c=3
=> ĐPCM
k mk nha
Vừa làm bên OLM xong, ko đưa đc link nên làm lại =))
Ta có BĐT phụ \(\frac{1+\sqrt{a}}{1-a}\ge4a+1\)
\(\Leftrightarrow-\frac{\sqrt{a}\left(2\sqrt{a}-1\right)^2}{\sqrt{a}-1}\ge0\forall\frac{1}{4}< a< 0\)
Tương tự ta cũng có:
\(\frac{1+\sqrt{b}}{1-b}\ge4b+1;\frac{1+\sqrt{c}}{1-c}\ge4c+1;\frac{1+\sqrt{d}}{1-d}\ge4d+1\)
Cộng theo vế các BDT trên ta có:
\(VT\ge4\left(a+b+c+d\right)+4=8=VP\)
Xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)
Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)
Qui đồng chứng minh tương đương là ra
\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)
\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)