Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left ( \sqrt{\frac{a}{b+c}},\sqrt{\frac{b}{a+c}},\sqrt{\frac{c}{a+b}} \right )=(x,y,z)\)
\(\Rightarrow \left\{\begin{matrix} x^2=\frac{a}{b+c}\\ y^2=\frac{b}{a+c}\\ z^2=\frac{c}{a+b}\end{matrix}\right.\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=2\)
\(\Leftrightarrow (1-\frac{1}{x^2+1})+(1-\frac{1}{y^2+1})+(1-\frac{1}{z^2+1})=1\)
\(\Leftrightarrow \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}=1\)
BĐT cần chứng minh tương đương:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 2(x+y+z)(\star)\)
Áp dụng BĐT Bunhiacopxky:
\(\left ( \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1} \right )(x^2+1+y^2+1+z^2+1)\geq (x+y+z)^2\)
\(\Leftrightarrow x^2+1+y^2+1+z^2+1\geq (x+y+z)^2\)
\(\Leftrightarrow xy+yz+xz\leq \frac{3}{2}\)
Kết hợp với hệ quả của BĐT AM-GM :
\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)
\(\Rightarrow xy+yz+xz\geq \frac{3xyz(x+y+z)}{xy+yz+xz}\geq \frac{3xyz(x+y+z)}{\frac{3}2{}}=2xyz(x+y+z)\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{2xyz(x+y+z)}{xyz}=2(x+y+z)\)
Do đó BĐT \((\star)\) được chứng minh.
Bài toán hoàn thành. Dấu bằng xảy ra khi \(a=b=c\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1\)
\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
Tương tự: \(b+1=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(c+1=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\)
\(VT=\sum\dfrac{\sqrt{a}}{a+1}=\sum\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\dfrac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(VP=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\dfrac{2}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2}}\)
\(=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(\Rightarrow VT=VP\) (đpcm)
ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)
\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)
\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)
\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
BĐT cần chứng minh tương đương :
\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)
Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)
Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)
Dấu = xảy ra khi X=Y=Z hay a=b=c
Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:
\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)
Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2.
Áp dụng bất đẳng thức Cô si cho 3 số dương ta có
x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+13≥33x3.x3.13 hay 2x^3+1\ge3x^22x3+1≥3x2.
Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+1≥3y2;2z3+1≥3z2. Cộng theo vế các bất đẳng thức nhận được ta có 2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+3≥2(x2+y2+z2)+(x2+y2+z2)
=2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2
\ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}≥2(x2+y2+z2)+331
Do đó x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3≥x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi
x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1⇔a=b=c>0.
Ta co : √a/√(b+c)=a/√a.(b+c)=2a/2√a.(b+c)≥2a/(a+b+c)
Vi a,b,c>0 nen √a/√(b+c)>2a/(a+b+c)
Tuong tu √b/√(b+c)>2b(a+b+c)
√c/√(a+b)>2c/(a+b+c)
=> VT>2a/(a+b+c) + 2b/(a+b+c) + 2c/(a+b+c)=2.(a+b+c)/(a+b+c)=2