K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Vậy ............................

\(\rightarrowđpcm\)

29 tháng 7 2017

Hỏi đáp Toán

29 tháng 7 2017

Chữ đẹp nhỉ

3 tháng 12 2017

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=t\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=t^3\\\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}=t^3\end{matrix}\right.\)

Ta có đpcm

3 tháng 12 2017

Ta có :

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(3\right)\)

Lại có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(4\right)\)

Từ \(\left(3\right)+\left(4\right)\Leftrightarrowđpcm\)

12 tháng 3 2017

Ta co :\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)=>\(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

=> \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

Mặt khác:\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (2)

Tu (1) va (2)

=> \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (dpcm)

16 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
=> \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
=> \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)

10 tháng 12 2017

Ko bt lm

Sang mà hỏi cô í

10 tháng 12 2017

Violympic toán 7Violympic toán 7

Tau đã nói là tau ko lừa mi nha!!!

3 tháng 3 2017

Giải:

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

Vậy...

3 tháng 3 2017

thanks

lam pn dc chu pneoeo

6 tháng 12 2017

Giải:

Vì:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}_{\left(2\right)}.\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}.\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{abc}{bcd}=\dfrac{a}{d}.\)

\(\Rightarrowđpcm.\)