Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là
a/b=2018a/2018b
Vì a/b<c/d
=>2018a/2018b<c/d
=>2018a+c/2018b+d<c+d
a) Ta có:
a−b=c+d
⇒a−b−c−d=0
⇒2a(a−b−c−d)=0
⇒2a2−2ab−2ac−2ad=0
Do đó:
a2+b2+c2+d2
=a2+b2+c2+d2+2a2−2ab−2ac−2ad
=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)
=(a−b)2+(a−c)2+(a−d)2
Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Ta có:
a+b+c+d=0
⇒a+b+c=−d
⇒a2+ab+ac=−da
⇒bc−da=a2+ab+ac+bc
⇒bc−da=a(a+b)+c(a+b)
⇒bc−da=(a+b)(a+c)(1)
Ta lại có:
a+b+c+d=0
⇒a+b+c=−d
⇒ac+bc+c2=−dc
⇒ab−cd=ac+bc+c2+ab
⇒ab−cd=c(a+c)+b(a+c)
⇒ab−cd=(a+c)(b+c)(2)
Ta lại có:
a+b+c+d=0
⇒a+b+c=−d
⇒ab+b2+bc=−db
⇒ca−db=ca+ab+b2+bc
⇒ca−db=a(b+c)+b(b+c)
⇒ca−db=(b+c)(a+b)(3)
Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:
(ab−cd)(bc−da)(ca−db)
=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)
=(a+c)2.(b+c)2.(a+b)2
=[(a+c)(b+c)(a+b)]2
Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2018ad< 2018bc\)
\(\Leftrightarrow2018ad+cd< 2018bc+cd\)
\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)
\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)
Ta có :
\(\dfrac{a}{b}=\dfrac{a.\left(b+d\right)}{b.\left(b+d\right)}=\dfrac{ab+bd}{b^2+bd}\)
\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b^2+bd}\)
Ta so sánh :
\(\dfrac{ab+bd}{b^2+bd}\) và \(\dfrac{ab+bc}{b^2+bd}\)
Vì cùng mẫu nên ta chỉ so sánh :
\(ab+bd\) và \(ab+bc\)
\(\Rightarrow\) Ta tiếp tục so sánh :
\(bd\) và bc thì ta có : bd < bc (1)
Từ 1, suy ra :
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Mà \(\dfrac{a}{b}< \dfrac{c}{d}\)
Suy ra : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) (đpcm)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)
Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :
\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Vậy...
Vì \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)
\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Mình chắc chắn 100% luôn. Mong các bạn .
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2019ad< 2019bc\)
\(\Leftrightarrow2019ad+cd< 2019bc+cd\)
\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)
\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.