\(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

Hình như là

a/b=2018a/2018b

Vì a/b<c/d

=>2018a/2018b<c/d

=>2018a+c/2018b+d<c+d

a) Ta có:

ab=c+d

abcd=0

⇒2a(abcd)=0

⇒2a2−2ab−2ac−2ad=0

Do đó:

a2+b2+c2+d2

=a2+b2+c2+d2+2a2−2ab−2ac−2ad

=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)

=(ab)2+(ac)2+(ad)2

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

a+b+c+d=0

a+b+c=−d

a2+ab+ac=−da

bcda=a2+ab+ac+bc

bcda=a(a+b)+c(a+b)

bcda=(a+b)(a+c)(1)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ac+bc+c2=−dc

abcd=ac+bc+c2+ab

abcd=c(a+c)+b(a+c)

abcd=(a+c)(b+c)(2)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ab+b2+bc=−db

cadb=ca+ab+b2+bc

cadb=a(b+c)+b(b+c)

cadb=(b+c)(a+b)(3)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

(abcd)(bcda)(cadb)

=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)

=(a+c)2.(b+c)2.(a+b)2

=[(a+c)(b+c)(a+b)]2

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

17 tháng 3 2019

ai giup minh di

5 tháng 4 2019

mk ko bt

1 tháng 8 2017

Ta có :

\(\dfrac{a}{b}=\dfrac{a.\left(b+d\right)}{b.\left(b+d\right)}=\dfrac{ab+bd}{b^2+bd}\)

\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b^2+bd}\)

Ta so sánh :

\(\dfrac{ab+bd}{b^2+bd}\)\(\dfrac{ab+bc}{b^2+bd}\)

Vì cùng mẫu nên ta chỉ so sánh :

\(ab+bd\)\(ab+bc\)

\(\Rightarrow\) Ta tiếp tục so sánh :

\(bd\) và bc thì ta có : bd < bc (1)

Từ 1, suy ra :

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\dfrac{a}{b}< \dfrac{c}{d}\)

Suy ra : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)pcm)

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)

Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :

\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Vậy...

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)

\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Mình chắc chắn 100% luôn. Mong các bạn .

10 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2019ad< 2019bc\)

\(\Leftrightarrow2019ad+cd< 2019bc+cd\)

\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)

\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.