K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{matrix}\right.\)

\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\) (1)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\dfrac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=d\)

8 tháng 5 2017

Ta có: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}\sqrt{b}}\).
Giả sử: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow a+b-\sqrt{ab}\ge\sqrt{ab}\)\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (Luôn đúng).
Vì vậy: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\).

3 tháng 12 2017

giải

áp dụng bđt cauchy-schwarz ta có

\(\left\{{}\begin{matrix}\dfrac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\dfrac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{\sqrt{b}}+\sqrt{b}+\dfrac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow dpcm\)

8 tháng 5 2017

Giả sử: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng).
Vì vậy: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).

29 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

31 tháng 1 2018

Chỉ bằng các kiến thức cho trong SGK (bất đẳng thức Cô si cho hai số không âm; bất đẳng thức Bunhiacopxki cho 2 cặp số) có thể giả bài toán như sau:

Ta có \(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)=\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+d\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

\(=4+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{d}+\dfrac{d}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{d}+\dfrac{d}{b}\right)+\left(\dfrac{c}{d}+\dfrac{d}{c}\right)\)

\(\ge4+2+2+2+2+2+2=16\)

Từ đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\). Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{a}{c}=\dfrac{c}{a};\dfrac{a}{d}=\dfrac{d}{a};\dfrac{b}{c}=\dfrac{c}{b};...\Leftrightarrow a=b=c=d\)

28 tháng 11 2017

câu b là áp dụng bất đẳng thức cô -si ko cần chứng minh

a,Áp dụng bất đẳng thức Cô-si cho 2 số dương a,\(\dfrac{1}{b}\)ta có

a+\(\dfrac{1}{b}\)>=\(2\sqrt{\dfrac{a}{b}}\)

chứng minh tương tự ta có

b+\(\dfrac{1}{c}\)>=2\(\sqrt{\dfrac{b}{c}}\)

c+\(\dfrac{1}{a}\)>=\(2\sqrt{\dfrac{c}{a}}\)

nhân chúng vs nhau ta đc cái cần phải chứng minh

8 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

16 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a+1}\ge1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}+1-\dfrac{1}{d+1}\)

\(=\dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\)\(\ge3\sqrt[3]{\dfrac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho 3 BĐT còn lại cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}};\dfrac{1}{d+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\dfrac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow1\ge81abcd\Leftrightarrow abcd\le\dfrac{1}{81}\)

8 tháng 1 2018

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{8}\ge\dfrac{3a^2}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{8}\ge\dfrac{3b^2}{2};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{8}\ge\dfrac{3c^2}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\dfrac{a^2+b^2+c^2+9}{8}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2}\)

\(\Leftrightarrow P\ge\dfrac{\dfrac{3\left(a^2+b^2+c^2\right)}{2}-\dfrac{a^2+b^2+c^2+9}{8}}{2}=\dfrac{3}{2}\)

13 tháng 6 2018

@DƯƠNG PHAN KHÁNH DƯƠNG

\(a;b;c\ge0\)thỏa mãn \(ab+bc+ca=1\). CMR \(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}+\dfrac{1}{2c+2ab+1}\ge1\)

Đảm bảo an ninh :))