K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Giả sử: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng).
Vì vậy: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).

29 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

31 tháng 1 2018

Chỉ bằng các kiến thức cho trong SGK (bất đẳng thức Cô si cho hai số không âm; bất đẳng thức Bunhiacopxki cho 2 cặp số) có thể giả bài toán như sau:

Ta có \(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)=\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+d\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

\(=4+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{d}+\dfrac{d}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{d}+\dfrac{d}{b}\right)+\left(\dfrac{c}{d}+\dfrac{d}{c}\right)\)

\(\ge4+2+2+2+2+2+2=16\)

Từ đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\). Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{a}{c}=\dfrac{c}{a};\dfrac{a}{d}=\dfrac{d}{a};\dfrac{b}{c}=\dfrac{c}{b};...\Leftrightarrow a=b=c=d\)

8 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

19 tháng 4 2017

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{matrix}\right.\)

\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\) (1)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\dfrac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=d\)

28 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

21 tháng 11 2018

ta có \(\dfrac{1}{\left(a+b\right)c}\le\dfrac{1}{2\sqrt{ab}c}=\dfrac{1}{2\sqrt{c}}\)tương tự ta có

\(\Sigma\dfrac{1}{\left(a+b\right)c}\le\Sigma\dfrac{1}{2\sqrt{c}}=\dfrac{\Sigma\sqrt{ab}}{2}\le\dfrac{\Sigma a}{2}\)(đpcm)

8 tháng 5 2017

Ta có: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}\sqrt{b}}\).
Giả sử: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow a+b-\sqrt{ab}\ge\sqrt{ab}\)\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (Luôn đúng).
Vì vậy: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\).

3 tháng 12 2017

giải

áp dụng bđt cauchy-schwarz ta có

\(\left\{{}\begin{matrix}\dfrac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\dfrac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{\sqrt{b}}+\sqrt{b}+\dfrac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow dpcm\)

25 tháng 7 2018

ta có : \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+\dfrac{b}{c}+\dfrac{a}{b}+\dfrac{ab}{bc}\right)\left(1+\dfrac{c}{a}\right)\)

\(=1+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{bc}{ac}+\dfrac{a}{b}+\dfrac{ac}{ba}+\dfrac{ab}{bc}+1\)

\(=2+\left(\dfrac{c}{a}+\dfrac{ab}{bc}\right)+\left(\dfrac{b}{c}+\dfrac{ac}{ba}\right)+\left(\dfrac{a}{b}+\dfrac{bc}{ac}\right)\ge2+2+2+2=8\) \(\Rightarrowđpcm\)

11 tháng 12 2017

\(A=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{c+a}+\dfrac{c+a}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)

\(A=\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)+\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right)\)

\(A\ge\dfrac{3}{2}+\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\) (bất đẳng thức Nesbit)

\(A\ge\dfrac{3}{2}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\)

\(A\ge\dfrac{3}{2}+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:

\(A\ge\dfrac{3}{2}+2\sqrt{\dfrac{ab}{ab}}+2\sqrt{\dfrac{ac}{ac}}+2\sqrt{\dfrac{bc}{bc}}\)

\(A\ge\dfrac{3}{2}+2+2+2=\dfrac{15}{2}\left(đpcm\right)\)

Dấu"=" xảy ra khi: \(a=b=c\)