Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho
xét biểu thức :
A = ( a2 - a ) + ( b2 - b ) + ( c2 - c ) + ( d2 - d )
Ta thấy A chẵn nên a2 + b2 + c2 + d2 - ( a + b + c + d ) là số chẵn
từ đề bài a2 + c2 = b2 + d2 nên a2 + c2 + b2 + d2 nên a + b + c + d chẵn
Mà tổng này > 2 nên là hợp số
\(a-b=c+d\)
\(\Rightarrow a=b+c+d\)
\(\Rightarrow a^2+b^2+c^2+d^2=\left(b+c+d\right)^2+b^2+c^2+d^2\)
\(=b^2+c^2+d^2+2bc+2bd+2cd+b^2+c^2+d^2\)
\(=\left(b+c\right)^2+\left(d+c\right)^2+\left(b+d\right)^2\left(đpcm\right)\)
a. Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
https://olm.vn/hoi-dap/question/630947.html
Bạn tham khảo nhé.
Bài 1:
Tao có:
\(81^7mod\left(405\right)\)
\(81^3\equiv81mod\left(405\right)\)
\(81^6\equiv81^2\equiv81mod\left(405\right)\)
\(81^7\equiv81^2.81\equiv81mod\left(405\right)\)
Ta có:
\(27^9mod\left(405\right)\)
\(27^3\equiv243mod\left(405\right)\)
\(27^9\equiv243^3\equiv162mod\left(405\right)\)
Ta có:
\(9^{13}mod\left(405\right)\)
\(9\equiv9mod\left(405\right)\)
\(9^3\equiv324mod\left(405\right)\)
\(9^9\equiv324^3\equiv324mod\left(405\right)\)
\(9^{10}\equiv324.9\equiv81mod\left(405\right)\)
\(9^{13}\equiv81.324\equiv324mod\left(405\right)\)
\(81^7+27^9-9^{13}:405=81+162-324:405=-0,2\)
\(\Rightarrow81^7+27^9-9^{13}⋮405\left(đpcm\right)\)
Casio không biết có áp dụng ntn vào bài này được không nữa? Nhưng mình ôn hổm rày thấy có bài gần giống vậy, nên mình làm thử bạn tham khảo nha chúc bạn học tốt! ^^
Yukina Trần Bài trên không chia hết nha bạn, hôm qua mình nhầm, nếu chia hết thì phải ra số nguyên chứ không phải số thập phân :)) Nếu giải vậy mà không chia hết thì đề sai hoặc là kết luận vô lí nha bạn. Mình xin lỗi! Hì, à chắc còn nhưng mình chỉ biết cách giải bằng máy casio này thui bạn ^^
b.
C\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=2.\left(2+1\right)+2^3.\left(2+1\right)+...+2^{59}.\left(2+1\right)\)
\(=2.3+2^3.3+...+2^{59}.3=\left(2+2^3+...+2^{59}\right).3\)chia hết cho 3
C \(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+4\right)+2^4.\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(=2.7+2^4.7+...+2^{58}.7=\left(2+2^4+...+2^{58}\right).7\)chia hết cho 7
C \(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+4+8\right)+...+2^{57}.\left(1+2+4+8\right)\)
\(=2.15+...+2^{57}.15=\left(2+...+2^{57}\right).15\)chia hết cho 15
đúng cái nha
\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
= \(\dfrac{a^3+a.c.b+b.d.c}{a.c.b+b.d.c+d^3}\)
= \(\dfrac{a^3}{d^3}=\dfrac{a}{d}\)
Đề có sai k bạn ??
to bi nham