\(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Ta có : \(ad=bc;a,b,c,d>0\)

\(\Rightarrow2\sqrt{ad}=2\sqrt{bc}\)

Khi đó : \(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\) \(=\frac{1}{\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)}{\left[\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)\right].\left[\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)\right]}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{d}\right)^2-\left(\sqrt{b}+\sqrt{c}\right)^2}\) \(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d+2\sqrt{ad}-b-c-2\sqrt{bc}}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d-b-c}\) ( Do \(2\sqrt{ad}=2\sqrt{bc}\) )

tao biết làm bài này từ lớp 7 rồi, lớp 9 cũng hỏi mấy câu này

4 tháng 8 2019

Đặt \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\left(\sqrt{a}+\sqrt{d}-\left(\sqrt{b}+\sqrt{c}\right)\right)}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{d}\right)^2-\left(\sqrt{b}+\sqrt{c}\right)^2}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+2\sqrt{ad}+d-\left(b+2\sqrt{bc}+c\right)}\)

\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow ad=bc\)

\(\Rightarrow A=\frac{\sqrt{a}-\sqrt{b}-\sqrt{c}+\sqrt{d}}{a+2\sqrt{bc}+d-b-2\sqrt{bc}-c}\)

\(=\frac{\sqrt{a}-\sqrt{b}-\sqrt{c}+\sqrt{d}}{a-b-c+d}\)

15 tháng 9 2018

\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)

b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)

c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)

d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)