Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0
=>c+d=-a-b
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=\left(a+b\right)^3+\left(-a-b\right)^3+3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)
=3(c+d)(ab-cd)
Ta có :
\(a+b+c+d=0\)
\(\Rightarrow c=-\left(a+b\right)\)
Do đó :
\(\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)\)
\(=-c^3-d^3-3cd\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
Vì \(a+b=-\left(c+d\right)\)
\(\Rightarrow3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(c+d\right)\left(ab-cd\right)\)
Tìm trước khi hỏi : Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9 - Học toán với OnlineMath
Từ \(a+b+c+d=0\) \(\Rightarrow\) \(a+b=-\left(c+d\right)\) \(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3-d^3-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)
Giải:
Ta có:
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-c-d\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
Từ đó, suy ra:
\(\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-\left(c^3+3c^2d+3cd^2+d^3\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3-3c^2d-3cd^2-d^3\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=-c^3-3cd\left(c+d\right)-d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)+3ab\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)
Vậy ...
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
a) Co:a+b+c+d=0
=> a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
b) Co: a+b+c=9
=> (a+b+c)^2 = 49
=> a^2 + b^2 +c^2 + 2(ab + bc + ca) = 49
=> 2(ab+bc+ca) = -4
=> ab+bc+ca= -2
2) \(8x^3-12x^2+6x-1=0\leftrightarrow\left(2x-1\right)^3=0\leftrightarrow2x-1=0\leftrightarrow x=\frac{1}{2}\)
Câu hỏi của ✰✰ βєsէ ℱƐƝƝIƘ ✰✰ - Toán lớp 8 - Học toán với OnlineMath