K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

Bài 1:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)

12 tháng 10 2016

Bài 2:

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{k^2.\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Bài 3: Tương tự nhé bạn chỉ cần thay a = bk, c = dk vào thôi

 

 

18 tháng 11 2018

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

5 tháng 3 2016

có cái spam mà được 7 k khiếp woà woá woa lun đoá.

5 tháng 3 2016

ai fan sơn tùng vs chơi truy kích thì kết bạn nha 

5 tháng 11 2021

Ta có:

\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)

\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

16 tháng 8 2019

\(3xy-5=x^2+2y\Leftrightarrow xy-x^2+2xy-2y=5\Leftrightarrow x\left(y-x\right)+2y\left(x-y\right)=5\Leftrightarrow\left(2y-x\right)\left(x-y\right)=5\)

\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=3^n\left(9+1\right)-2\left(2^{n+1}+2^{n-1}\right)\left(n\in Z^+\right)=3^n.10-2\left(4.2^{n-1}+2^{n-1}\right)=3^n.10-10.2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)

b) 3n+2-2n+2+3n-2n = (3n+2+3n)+(-2n+2-2n) = (3n.32+3n)+[-2n.(-2)2-2n

= 3n (9+1) -2n(4+1)

=3n . 10 - 2n.5

= 3n.10 - 2n-1.10

= 10 ( 3n-2n-1) \(⋮\) 10

Vậy ...

6 tháng 8 2019

Bài 5:

a) \(32< 2^n< 128\)

\(2^5< 2^n< 2^7\)

\(5< n< 7\)

=> \(n=6\)

Vậy \(n=6.\)

b) Sửa lại đề là \(2.16>2^n>4\)

\(32>2^n>4\)

\(2^5>2^n>2^2\)

\(5>n>2\)

=> \(n=3;n=4\)

Vậy \(n\in\left\{3;4\right\}.\)

c) \(9.27< 3^n< 243\)

\(243< 3^n< 243\)

\(3^5< 3^n< 3^5\)

\(5< n< 5\)

=> \(n\in\varnothing\)

Vậy không tồn tại giá trị nào của \(n.\)

Mình chỉ làm bài 5 thôi nhé.

Chúc bạn học tốt!

6 tháng 8 2019

5.

a) 32 < 2n < 128

<=> 25 < 2n < 27

<=> 2n = 26

<=> n = 6

b) sai đề

c) 9.27 \(\le\) 3n \(\le\) 243

<=> 35 \(\le\) 3n \(\le\) 35

<=> 3n = 35 <=> n = 5

6.

a) 9920 = (992)10 = 980110

Vì 9801 < 9999 nên 980110 < 999910

hay 9920 < 999910

b) 321 = 3.320 = 3.(32)10 = 3.910

231 = 2.230 = 2.(23)10 = 2.810

Vì 3.910 < 2.810 nên 321 < 231

c) 3.2410 = 3.(23.3)10 = 311.230 = 311.(22)15 = 311.415

Vì 311.415 < 415.415 = 430

nên 3.2410 < 230 + 330 + 430