K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2021

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=-5\)

\(\Rightarrow\left(ab+bc+ca\right)^2=25\)

\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)

\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)

\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)

\(=10^2-2.25=50\)

3 tháng 10 2021

Ta có: a+b+c=0 ⇒(a+b+c)2=0

Hay a2+b2+c2+2ab+2bc+2ca=0

1+2(ac+bc+ca)=0

ab+bc+ca=\(\dfrac{-1}{2}\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)

hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)

Từ (1) và (2) ⇒a4+b4+c4=50

9 tháng 11 2017

1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213​)2+48217​≤48217​
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2

9 tháng 11 2017

1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213​)2+48217​≤48217​
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1x3+3xy+y3=x3+3xy.1+y3=x3+y3+3xy(x+y)=(x+y)3=1
3/ a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
\Leftrightarrow ab+bc+ac=-\frac{1}{2}⇔ab+bc+ac=−21​ \Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}⇔(ab+bc+ac)2=41​⇔a2b2+b2c2+c2a2+2abc(a+b+c)=41​
\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}⇔a2b2+b2c2+c2a2=41​(vì a+b+c=0)
Ta có : a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1a2+b2+c2=1⇔(a2+b2+c2)2=1⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=1
\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}⇔a4+b4+c4=1−2(a2b2+b2c2+c2a2)=1−42.1​=21​

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

7 tháng 9 2016

a/ \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

b/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3a\left(xy\right)=a^3-\frac{3a\left(a^2-b\right)}{2}=\frac{3ab}{2}-\frac{a^3}{2}\)

c/ Không rõ đề

11 tháng 6 2017

a2 + b2 + c2 = bao nhiêu em?

11 tháng 6 2017

dạ =12 ạ

11 tháng 6 2017

https://olm.vn/hoi-dap/question/968041.html

bài này đăng rồi mà khác mỗi số thay 10 =12 thôi

đ/s 72

25 tháng 7 2017

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8.0=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\Leftrightarrow a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=\frac{1}{2}.1^2=\frac{1}{2}\)

Vậy \(a^4+b^4+c^4=\frac{1}{2}\)