Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
Từ giả thiết ta có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=a^2\)
\(\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự:
\(b^2-c^2-a^2=2ca,c^2-a^2-b^2=2ab\)
Từ đây suy ra:
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Mặt khác lại có:
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^3=-a^3\)
\(\Rightarrow b^3+c^3+3bc\left(b+c\right)=-a^3\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow A=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3}{2}\)
Ta có a+b+c=0 => b+c=-a => a^2=b^2+2bc+c^2=> a^2-b^2-c^2=2bc
Tương tự ta có : b^2-c^2-a^2=2ca
c^2-a^2-b^2=2ab
=> a^2/2bc+b^2/2ca+c^2/2ab=(a^3+b^3+c^3)/2abc
=>Ta lại có a^3+b^3+c^3=(a+b+c)^3+
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)
\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)
\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)
\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)
\(a+b+c=0\)
\(a+b=-c\)
\(\left(a+b\right)^3=\left(-c\right)^3\)
\(a^3+3a^2b+3ab^2+b^3=-c^3\)
\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(a^3+b^3+c^3=-3ab\left(-c\right)\)
\(a^3+b^3+c^3=3abc\left(1\right)\)
\(P=\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}\)
\(P=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(P=\dfrac{a^3+b^3+c^3}{abc}\)
Thay (1) vào P ta được :
\(P=\dfrac{3abc}{abc}=3\)
Vậy.......