Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:M=a3+b3+c(a2+b2)-abc
=(a+b)(a2-ab+b2)-(a+b)(a2+b2)+(a+b).ab
=(a+b)(a2-ab+b2-a2-b2+ab)
=(a+b).0=0
Vậy GT của M là:0
\(A^3+B^3+A^2C+B^2C-ABC\)
\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)
\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)
\(=\left(A^2-AB+B^2\right).0\)
\(=o\)
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+c=-b\\b+c=-a\end{cases}}\)
\(A=\left(a^3+ca^2\right)+\left(b^2+cb^2\right)-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2.\left(-b\right)+b^2.\left(-a\right)-abc\)
\(=-a^2b-ab^2-abc\)
\(=-ab\left(a+b+c\right)=0\)
a+b+c=0 <=> c = -a-b
M = a3+b3+c(a2+b2)-abc
M = a3+b3+(-a-b)(a2+b2)-abc
M = a3+b3-a3-a2b-ab2-b3-abc
M = -a2b-ab2-abc
M = -ab(a+b+c)
M = -ab.0 = 0
Bài1: Phân tích các đa thức sau thành nhân tử
a)36-4x2+4xy-y2
\(=6^2-\left(4x^2-4xy+y^2\right)\)
\(=6^2-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b)2x4+3x2-5
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)
B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)
\(=\left(6-2x+y\right)\left(6+2x-y\right)\)
c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)
d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)
e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)