Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(D=a^2+b^2+c^2+ab+bc-ca\)
\(\Leftrightarrow D=\left(\frac{a}{\sqrt{2}}+\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}+\frac{c}{\sqrt{2}}\right)^2+\left(\frac{a}{\sqrt{2}}-\frac{c}{\sqrt{2}}\right)^2\)
Mà \(\left\{{}\begin{matrix}a+b=5\\b+c=-7\\a-c=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=25\\\left(b+c\right)^2=49\\\left(a-c\right)^2=144\end{matrix}\right.\)
\(\Rightarrow D=\frac{25}{2}+\frac{49}{2}+\frac{144}{2}=109\)
(a+b+c)^2=81
<=>a^2+b^2+c^2+2ab+2bc+2ac=81
<=>53+2(ab+bc+ac)=81
<=>2(ab+bc+ac)=28
<=>ab+bc+ac=14
Ta có:
ab + bc + ac = 0
=> \(\frac{ab+bc+ac}{abc}=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Em làm tiếp theo link: Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có :
\(ab+bc+ca=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Quay lại bài toán ta có :
\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3abc}{abc}=3\)
Chúc bạn học tốt !!!
a) Co:a+b+c+d=0
=> a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
b) Co: a+b+c=9
=> (a+b+c)^2 = 49
=> a^2 + b^2 +c^2 + 2(ab + bc + ca) = 49
=> 2(ab+bc+ca) = -4
=> ab+bc+ca= -2
2) \(8x^3-12x^2+6x-1=0\leftrightarrow\left(2x-1\right)^3=0\leftrightarrow2x-1=0\leftrightarrow x=\frac{1}{2}\)
Ta có:
bc/a^2 + ac/b^2 + ab/c^2=abc(1/a^3 + 1/b^3 + 1/c^3)
Gt => 1/a + 1/b=-1/c
=> 1/a^3+1/b^3 = (1/a+1/b)^3 - 3.1/a.1/b(1/a+1/b) = -1/c^3 + 3.1/(abc)
=> 1/a^3 + 1/b^3 + 1/c^3=3/(abc)
=> bc/a^2 + ac/b^2 + ab/c^2=3.
\(\text{Ta có: }\hept{\begin{cases}a+b=5\\b+c=-7\end{cases}\Leftrightarrow a+b-b-c=12\Leftrightarrow a-c=12}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=5\\b+c=-7\\a-c=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=25\\\left(b+c\right)^2=49\\\left(a-c\right)^2=144\end{cases}}\)
\(\Leftrightarrow2.\left(a^2+b^2+c^2+ab+bc-ac\right)=25+49+144=218\)
\(\Leftrightarrow D=a^2+b^2+c^2+ab+bc-ac=109\)
\(\text{Vậy }D=109\)