K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

a)\(a+b=-5\)

\(\Rightarrow\left(a+b\right)^2=25\)

\(\Leftrightarrow a^2+2ab+b^2=25\)

\(\Leftrightarrow a^2+12+b^2=25\)

\(\Leftrightarrow a^2+b^2=13\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=-5\left(13-6\right)=-35\)

6 tháng 10 2019

b) \(a-b=9\)

\(\Leftrightarrow\left(a-b\right)^2=81\)

\(\Leftrightarrow a^2-2ab+b^2=81\)

\(\Leftrightarrow a^2-44+b^2=81\)

\(\Leftrightarrow a^2+b^2=125\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=9\left(125+22\right)=1323\)

25 tháng 9 2020

1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab

                  = 72 - 4.5 = 49 - 20 = 29

2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab

                    = 52 + 4.3 = 25 + 12 = 37

14 tháng 9 2017

Ngay kia minh giup

14 tháng 9 2017

ok dc lun

19 tháng 10 2020

Ta có a + b = 5 ;

=> (a + b)2 = 25

=> a2 + 2ab + b2 = 25

=> a2 + b2 = 19

Lại có (a - b)2 = a2 - 2ab + b2 = 19 - 6 = 13

=> (a - b)2 = 13

=> a - b = \(\pm\sqrt{13}\)

19 tháng 10 2020

\(a+b=5\)

=> \(\left(a+b\right)^2=25\)

=> \(a^2+2ab+b^2=25\)

=> \(a^2+b^2+6=25\)

=> \(a^2+b^2=19\)

Ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=19-6=13\)

=> \(a-b=\pm\sqrt{13}\)

6 tháng 7 2016

Áp dụng HDT mũ 7 nhưng trước cần tính:

\(ab=3\Rightarrow\hept{\begin{cases}a^2b^2=9\\a^3b^3=27\end{cases}}\)

\(\left(a+b\right)=5\Rightarrow\left(a+b\right)^3=125\Rightarrow a^3+b^3+3ab\left(a+b\right)=125\Rightarrow a^3+b^3=125-3.3.5=80\)

do ab=3,a+b=5

Mặt khác :

\(a+b=5\Rightarrow\left(a+b\right)^5=a^5+b^5+5ab\left(a^3+b^3\right)+10a^2b^2\left(a+b\right)=3125\Rightarrow a^5+b^5=3125-5.3.80+10.9.5=1475\)

Áp dụng hằng đẳng thức Mũ 7

\(a+b=5\Rightarrow a^7+b^7+7ab\left(a^5+b^5\right)+21a^2b^2\left(a^3+b^3\right)+35a^3b^3\left(a+b\right)=78125\)

Mà \(a^5+b^5=1475,a^3+b^3=80,a+b=5,ab=3,a^2b^2=9,a^3b^3=27\)

\(\Rightarrow a^7+b^7+7.3.1475+21.9.80+35.27.5=78125\Rightarrow a^7+b^7=78125-52980=25145\)

Chúc bạn học tốt 

T I C K nha

\(a,a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

Thay \(a+b=-5;a.b=6\) vào biểu thức ta được :

\(a,=\left(-5\right)^2-2.6\)

\(=25-12\)

\(=13\)

21 tháng 8 2020

a, \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13\)

b, \(a^3+b^3=\left(a+b\right)^3-3a^2b-3b^2a\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-5\right)^3-3.6.\left(-5\right)\)

\(=-125-18.\left(-5\right)=-125+90=-35\)