Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
A = 50 + 51 + 52 + ... + 52010 + 52011
=> 5A = 51 + 52 + 53 + ... + 52012
=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )
=> 4A = 22012 - 50 = 52012 - 1
=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5
b) Phần a ta đã tính được 4A + 1 = 52012
Mà 4A + 1 = 5x
=> 5x = 52012
=> x = 2012
Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)
\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương
( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)
Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)
Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)
Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)
Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)
Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)
( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)
\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
A = 4 + 22 + 23 + 24 + ... + 2 20
=>A = 2 2 + 22 + 23 + 24 + ... + 2 20
=>2A= 2 4 + 2 6 + 2 8 + 2 10+ ... + 2 20 +22 21
=>A=22 21 -2 4
( x + 1 ) + ( x + 2 ) + ...+ ( x + 100 ) = 5750
100x+(1+2+3+4+...+100)=5750
100x+5050=5750
100x=500
x=5