Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Ta có: \(A=\frac{6n-9+13}{2n-3}=\frac{3\left(2n-3\right)+13}{2n-3}\)
Mà: 3 ( 2n - 3 ) chia hết cho 2n - 3
=> 13 chia hết cho 2n - 3 => 2n - 3 E Ư(13) = {1,-1,13,-13}
=> 2n E {4,2,16,-10}
Ta có bảng sau:
2n | 4 | 2 | 16 | -10 |
n | 2 | 1 | 8 | -5 |
Làm được có mỗi câu a) thôi :(
Để a là số nguyên thì \(4n+5⋮2n+2\)
=> \(4n+4+1⋮2n+2\)
Nhận thấy \(4n+4⋮2n+2\) nhưng \(1⋮̸2n+2\left(n\inℤ\right)\)
Suy ra không có giá trị n để A là số nguyên.
b, Đặt ƯCLN A = 4n + 5 ; 2n + 2 = d
\(4n+5⋮d\)(1)
\(2n+2⋮d\Rightarrow4n+4⋮d\)(2)
Lấy (1) - (2) ta được : \(4n+5-4n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4
=>10n-18 chia hét cho 2n+4
=>10n+20-38 chia hết cho 2n+4
=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)