Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
A=a-5b
B=10a+b
=>7A+B =7(a-5b)+10a+b = 17a -34b=17(a-2b) chia hết cho 17
Nếu A chia hết cho 17=> 7A chia hét cho 17 ; mà 7A+B chia hết cho 17
=> B chia hết cho 17
Ta có : a - 5b chia hết cho 17
=> 10(a - 5b ) chia hết cho 17
=> 10a - 50b chia hết cho 17
=> 10a + b - 51b chia hết cho 17
Vì 51b chia hết cho 17 => 10a + b chia hết cho 17
kết bạn với mk đi mk bảo
bạn có thể tham khảoCâu hỏi của nguyen mai chi - Toán lớp 6 - Học toán với OnlineMath
\(\text{ a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 }\)
\(\text{10a-50b=10a+b-51b }\)
\(\text{51b chia hết cho 17 nên 10a+b chia hết cho 17}\)
~~~~~~~~~~~~~
~~~~~~~~~~
Hok giỏi nghen!~
10a + b chia hết cho 17 nên chia hết cho 17