Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A+5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(\Rightarrow4A=5^{993}-5\)
=> 4A + 5 = 5993 = (53)331 = 125331
Vậy 4A + 5 là một lũy thừa của 125
A = 5 + 52 + 53 + ...+ 5992
5A = 52 + 53 + 54 + ... + 5993
5A - A = (52 + 53 + 54 + ... + 5993) - (5 + 52 + 53 + ...+ 5992)
4A = 5993 - 5
4A + 5 = 5993
4A + 5 = (53)331
4A + 5 =125331
Vậy 4A + 5 là một lũy thừa của 125
* Đề phải là '' Chứng minh rằng 4A + 5 là một lũy thừa của 125 ''
\(A=5+5^2+5^3+...5^{992}\)
\(\rightarrow5A=5^2+5^3+...+5^{993}\)
\(\rightarrow5A-A=-5+5^{993}\)
\(\rightarrow4A=5^{993}-5\)
\(\rightarrow4A+5=5^{993}-5+5\)
\(\rightarrow4A+5=5^{993}\)
\(\rightarrow4A+5=\left(5^3\right).331\)
\(\rightarrow4A+4=125^{331}\)
\(\text{Vậy}\)\(4A+5\)\(\text{là một lũy thừa của}\)\(125\)
\(A=5+5^2+5^3+5^4+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+5^4+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A+5=5^{993}\)
\(4A+5=\left(5^3\right)^{331}=125^{331}\)
vì 11^2015 - 1 luôn có taanj cùng bằng 1
mà 1 - 1 = 0 ; mà số tcos tận cùng bằng 0 luôn chia hết cho 2 và 5
tick nha
cái này mình chưa học xin lỗi nhưng có thể hỏi 1 người : olm.vn/thanhvien/sangngocnguyen
\(A=5+5^2+5^3+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+...+5^{993}\right)-\left(5+5^2+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A=5^3.5^{331}-5\)
mà 53 = 125
=> 4A là một lũy thừa của 125 ( đpcm )
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=4A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)=5^{993}-5\)
Mình nghĩ bạn ghi sai đề vì phải 4A+5 mới ra lũy thừa của 125
Là thế này:
\(\Rightarrow4A+5=5^{993}=\left(5^3\right)^{331}=125^{331}\)
nên 4A+5 là lũy thừa của 125