\(\in\) N ) . Chứng tỏ A 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

a)Ta có : 5\(^5\)- 5\(^4\) + 5\(^3\)

= 53(52 - 5 + 1 )

=5. 21 

Vì 21 \(⋮\)7 nên 21 . 53\(⋮\)7

Vậy 5-54 + 53 \(⋮\)7

 Mấy câu kia b giải tương tự nhé

20 tháng 8 2017

chứng minh tận cùng là 0

18 tháng 11 2018

Sai đề:

(472)51 vì có 472 số tận cùng là 9=> (472)51có số tận cùng là 1

 Với n=1   4n có số tận cùng là 4

=>  4n +(472)51 có số tận cùng là 5 => A ko chia hết cho 10

Với n>1  4n có số tận cùng là 6

=> =>  4n +(472)51 có số tận cùng là 6+1=7=> A ko chia hết cho 10

Nếu đã học đồng dư. dùng sẽ nhanh và hay hơn !

25 tháng 4 2018

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

=\(\dfrac{3}{2}.\dfrac{56}{305}\)

= \(\dfrac{78}{305}\)

25 tháng 4 2018

\(\left(x^2-4\right)\left(6-2x\right)=0\)\(x^2-4=0\) hoặc \(6-2x=0\)

*Nếu \(x^2-4=0\)

⇒ x2 = 4

⇒ x ∈ {2 ; -2}

*Nếu \(6-2x=0\)

⇒2x = 6

⇒ x = 6 : 2 = 3

Vậy x ∈ { -2 ; 2 ; 3 }

8 tháng 7 2018

\(a,19^{2018}+13^{2018}\)

\(19\equiv-1\left(mod10\right)\)

\(\Rightarrow19\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)

\(13^{2018}=\left(13^2\right)^{1009}=169^{1009}\)

\(169\equiv-1\left(mod10\right)\)

\(\Rightarrow169^{1009}\equiv\left(-1\right)^{1009}=-1\left(mod10\right)\)

\(\Rightarrow19^{2018}+13^{2018}\equiv1+\left(-1\right)=0\left(mod10\right)\)

\(\Leftrightarrow19^{2018}+13^{2018}⋮10\left(đpcm\right).\)

\(b,17^{2013}+23^{2017}\)

\(17^{2013}=\left(17^2\right)^{1006}.17=289^{1006}.17\)

\(289\equiv-1\left(mod10\right)\)

\(\Rightarrow289^{1006}\equiv\left(-1\right)^{1006}=1\left(mod10\right)\)

\(17\equiv7\left(mod10\right)\)

\(\Rightarrow289^{1006}.17\equiv1.7=7\left(mod10\right)\)( 1 )

\(23^{2017}=\left(23^2\right)^{1008}.23=529^{1008}.23\)

\(529\equiv-1\left(mod10\right)\)

\(\Rightarrow529^{1008}\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)

\(23\equiv3\left(mod10\right)\)

\(\Rightarrow529^{1008}.23\equiv1.3=3\left(mod10\right)\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow17^{2013}+23^{2017}\equiv7+3=10\left(mod10\right)\)

Mà \(10⋮10\Rightarrow17^{2013}+23^{2017}\equiv0\left(mod10\right)\)

\(\Leftrightarrow17^{2013}+23^{2017}⋮10\left(đpcm\right).\)

\(c,17^5+24^4-13^{21}\)

\(=\overline{...7}+\overline{...6}-\overline{...3}\)

\(=\overline{...0}⋮10\)

\(\Rightarrow17^5+24^4-13^{21}⋮10\left(đpcm\right).\)

27 tháng 10 2017

giải giúp mk với mk sắp đi học rồibucminh

16 tháng 1 2016

bạn xét chữ số tận cùng ý