Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề:
(472)51 vì có 472 số tận cùng là 9=> (472)51có số tận cùng là 1
Với n=1 4n có số tận cùng là 4
=> 4n +(472)51 có số tận cùng là 5 => A ko chia hết cho 10
Với n>1 4n có số tận cùng là 6
=> => 4n +(472)51 có số tận cùng là 6+1=7=> A ko chia hết cho 10
Nếu đã học đồng dư. dùng sẽ nhanh và hay hơn !
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
\(a,19^{2018}+13^{2018}\)
\(19\equiv-1\left(mod10\right)\)
\(\Rightarrow19\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)
\(13^{2018}=\left(13^2\right)^{1009}=169^{1009}\)
\(169\equiv-1\left(mod10\right)\)
\(\Rightarrow169^{1009}\equiv\left(-1\right)^{1009}=-1\left(mod10\right)\)
\(\Rightarrow19^{2018}+13^{2018}\equiv1+\left(-1\right)=0\left(mod10\right)\)
\(\Leftrightarrow19^{2018}+13^{2018}⋮10\left(đpcm\right).\)
\(b,17^{2013}+23^{2017}\)
\(17^{2013}=\left(17^2\right)^{1006}.17=289^{1006}.17\)
\(289\equiv-1\left(mod10\right)\)
\(\Rightarrow289^{1006}\equiv\left(-1\right)^{1006}=1\left(mod10\right)\)
\(17\equiv7\left(mod10\right)\)
\(\Rightarrow289^{1006}.17\equiv1.7=7\left(mod10\right)\)( 1 )
\(23^{2017}=\left(23^2\right)^{1008}.23=529^{1008}.23\)
\(529\equiv-1\left(mod10\right)\)
\(\Rightarrow529^{1008}\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)
\(23\equiv3\left(mod10\right)\)
\(\Rightarrow529^{1008}.23\equiv1.3=3\left(mod10\right)\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow17^{2013}+23^{2017}\equiv7+3=10\left(mod10\right)\)
Mà \(10⋮10\Rightarrow17^{2013}+23^{2017}\equiv0\left(mod10\right)\)
\(\Leftrightarrow17^{2013}+23^{2017}⋮10\left(đpcm\right).\)
\(c,17^5+24^4-13^{21}\)
\(=\overline{...7}+\overline{...6}-\overline{...3}\)
\(=\overline{...0}⋮10\)
\(\Rightarrow17^5+24^4-13^{21}⋮10\left(đpcm\right).\)