K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2023

\(A=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2+5^3+5^4+5^5+5^6\right)+....+5^{2016}\left(5+5^2+5^3+5^4+5^5+5^6\right)\\ =19530+....+5^{2016}.19530\\ =210.93+...+5^{2016}.210.93\\ =93.210.\left(1+...+5^{2016}\right)⋮93\left(ĐPCM\right)\)

DT
3 tháng 11 2023

A = (5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2020+5^2021+5^2022)

= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^2020(1+5+5^2)

= 5.31+5^4.31+...+5^2020.31

= 31(5+5^4+...+5^2020) chia hết cho 31

28 tháng 10 2023

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

28 tháng 10 2023

bạn Tiến Dũng Trương lm sai r

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

8 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

7 tháng 1 2024

hết cứu

 

12 tháng 8 2017

a) 4.(1+4)+43.(1+4)+................+459(1+4)

=5.4+5.43+...+5.459

=5.(4+43+.+459) chia hết cho 5

4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)

=21.4+44.21+..+21.458

=21.(4+44+.+458) chia hết cho 21

b) 5.(1+5)+53(1+5)+.+59(1+5)

=6.(5+53+.............+59) chia hết cho 6

23 tháng 7 2018

a) Đặt biểu thức trên là A, ta có:

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)

=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)

=> A = 4 . 5 + 43 . 5 + ... + 459 . 5

=> A = 5(4 + 43 + ... + 459)

=> A ⋮ 5

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)

=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)

=> A = 4 . 21 + 44 . 21 + ... + 458 . 21

=> A = 21(4 + 44 + ... + 458)

=> A ⋮ 21

b) Đặt biểu thức trên là B, ta có:

B = 5 + 52 + 53 + 54 + ... + 510

=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)

=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)

=> B = 5 . 6 + 53 . 6 + ... + 59 . 6

=> B = 6(5 + 53 + ... + 59)

=> B ⋮ 6