K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

A= 4+2^2+2^3+....+2^2015

\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016

\(\Rightarrow\)   2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015

\(\Rightarrow\)A=8+2^2016 - 4 - 2^2

\(\Rightarrow\)A=2^2016

Vậy A là lũy thừa của 2

24 tháng 7 2017

Ta có:\(\frac{x^2+3x+9}{x+3}\)=\(\frac{x\left(x+3\right)+9}{x+3}\)= x+\(\frac{9}{x+3}\)

Để x\(^2\)+3x+9 \(⋮\)x+3 \(\Rightarrow\)9\(⋮\)x+3 hay x+3\(\in\)Ư(9)={-1;1;-3;3;-9;9}

\(\Rightarrow\)x+3\(\in\){-1;1;-3;3;-9;9}

\(\Rightarrow\)x\(\in\){-4;-2;-6;0;-12;6}

4 tháng 8 2017

a) \(A=4+4^2+4^3+...+4^{200}\)

\(4A=4^2+4^3+...+4^{201}\)

\(4A-A=3A=4^{201}-4\)

\(A=\frac{4^{201}-4}{3}\)

b) \(B=1+5+5^2+...+5^{2017}\)

\(5B=5+5^2+5^3+...+5^{2018}\)

\(5B-B=4B=5^{2018}-1\)

\(B=\frac{5^{2018}-1}{4}\)

c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)

\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)

\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)

T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^

17 tháng 7 2015

Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:

S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)

=(5+52+53+54+55+56)(1+56+...+590)

Ta có 
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126

S⋮126

S⋮5.2=10

Vậy tận cùng là 0

13 tháng 7 2018

Ta có; 92=(32)2=34

274=(33)4=312

812=(34)2=38

2432=(35)2=310

13 tháng 7 2018

Ta có :

+) \(9^2=\left(3^2\right)^2=3^4\)

+) \(27^4=\left(3^3\right)^4=3^{12}\)

+) \(81^2=\left(3^4\right)^2=3^8\)

+) \(243^2=\left(3^5\right)^2=3^{10}\)

_Chúc bạn học tốt_

23 tháng 7 2019

\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)

áp dụng tính chất DTSBN ta có

\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

\(+\frac{a}{-3}=>a=-6\)

\(+\frac{b}{4}=2=>b=8\)

\(+\frac{c}{6}=2=>c=12\)

Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số băng nhau:

 \(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)

6 tháng 8 2019

*Vẽ các trung tuyến BN, CE lần lượt tại B và C. Gọi G là trọng tâm của \(\Delta ABC\)..Nối MN

Áp dụng BĐT tam giác vào \(\Delta AMN\), ta được:

\(AM< AN+NM\)(1)

Mà \(AN=\frac{1}{2}AC\)(Do BN là trung tuyến ứng với cạnh AC)                 (2)

và \(MN=\frac{1}{2}AB\)(Do MN là đường trung bình ứng với cạnh \(AB\)của \(\Delta ABC\))                   (3)

Từ (1), (2) và (3) suy ra \(AM< \frac{1}{2}AB+\frac{1}{2}AC\)

hay \(AM< \frac{1}{2}\left(AB+AC\right)\)         (đpcm)

18 tháng 12 2016

1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab

=>(a+b/)2ab-1/h=0

quy dong len ta co

(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0

                                                                       =>ah+bh-ab-ab=0

                                                                         =>a(h-b)-b(a-h)=0  

                                                                           =>a(h-b)=b(a-h)

                                                                              =>a/b=(a-h)(h-b)

                                                                       

21 tháng 7 2017

Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)

\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)

Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)

\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)

\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)

\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)

=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)

=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)