Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
1) Số số hạng là: \(\frac{2x-1-1}{2}+1=\frac{2x-2}{2}+1=\frac{2\left(x-1\right)}{2}+1=x-1+1=x\)
Tổng là \(\frac{\left(1+2x-1\right).x}{2}=225\)
\(\frac{2.x^2}{2}=225\)
x2=225
x=15
Đợi chút mình làm câu b. Mỏi tay quá
a) \(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
vay \(x=5\)
b) \(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
vay \(x=2\)
a, Đặt \(A=1+2+2^2+...+2^x\)
\(A=2^x+2^{x-1}+....+2^2+2+1\)(đảo lại số hạng để phục vụ tính bước sau )
\(2A=2^{x+1}+2^x+...+2^3+2^2+2\)
\(2A-A=2^{x+1}-1\)
Suy ra \(A=2^{x+1}-1\)
Khi đó \(2^{x+1}-1=1023\Rightarrow2^{x+1}=1024\Rightarrow2^{x+1}=2^{10}\Rightarrow x+1=10\Rightarrow x=9\)
Vậy x = 9
b ) Ta có \(A=1+3+3^2+3^3+...+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=1.\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{116}.\left(1+3+3^2+3^3\right)\)
\(A=\left(1+3+3^2+3^3\right).\left(1+3^4+...+3^{116}\right)\)
\(A=40.\left(1+3^4+...+3^{116}\right)⋮40\)
Vậy A chia hết cho 40
Mình giải bài này rồi mà không biết đúng hay sai nên các bạn làm bài này cho tớ xem hộ tớ đúng không nhé. Cảm ơn!
A = x + 3 + 32 + 33 + 34 +.........................+ 32015 + 32016 + 32017.
A có: (2017 - 1) + 1 = 2018 số hạng.
2018 : 3 = 672 dư 2
A = (x + 3) + (32 + 33 + 34) + .........................+ (32015 + 32016 + 32017)
A = (x + 3) + 32.(1 + 3 + 32) + ..........................+ 32015.(1 + 3 + 32)
A = (x + 3) + 32. 13 +...........................+ 32015. 13
A = (x + 3) + 13.(32 +.............................+32015)
Mà A chia hết cho 13 => x + 3 chia hết cho 13.
=> x + 3 thuộc B(13)
B(13) = {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x + 3 thuộc {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x thuộc {-3 ; 10 ; 23 ; 36 ; 49 ;.......}
Mà x thuộc N, x chia hết cho 12 và x < 50.
=> x = 36.
Vậy số tự nhiên x cần tìm để A chia hết cho 13 là 36.
(Sao ko ai biết cách làm bài này thế??)
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
ta có:2+4+6+...+2500=x(x +1)
<=>2(1+2+3+...+1250)=x(x+1)
<=>2(1250+1)1250:2=x(x+1)
<=>1250(1250+1)=x(x+1) <=>x=1250
ta co: P=3+3²+3³+...+3^2014
=>3P=3^2+3^3+...+3^2015
=>2P =3^2015-3
=>2P+3=3^2015=3^x
=>x=2015
Vậy x=2015̀̀̀̀̀̀̀̀̀̀̀̀
a) (4x - 1)2 = 25.9
=> (4x - 1)2 = 52 . 32 = 152
=> 4x - 1 = 15
=> 4x = 16
=> x = 4
b) 2x + 2x+3 = 144
=> 2x + 2x . 23 = 144
=> 2x (1 + 23) = 144
=> 2x . 9 = 144
=> 2x = 16
=> x = 4
c) đề chắc chắn đúng chứ :v
d) (2x + 1)3 - 12 = 15
=> (2x + 1)3 = 27
=> (2x + 1)3 = 33
=> 2x + 1 = 3 => 2x = 2 => x = 1
2. 2x = 16 => 2x = 24 => x = 4
3x = 81 => 3x = 34 => x = 4
x3 = 64 => x3 = 43 => x = 4
x2 =81 => x2 = 92 => x = 9
1 /
abc = 198
2 /
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
3 /
a ) Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3
b ) nhận thấy
cứ nhân 5 lần số 3 với nhau tận cùng là 3
mà có : 101 : 5 = 20 ( dư 1 )
sau khi có tận cùng là 3 ta nhân thêm 1 số 3 nữa được tận cùng là 9
4 /
a ) = 315
b ) = 216
c ) = 0 , 015555555555554
d ) = 2
nhé !