K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

a/ nhóm lần lượt 2 số hạng liên tiếp thành 1 nhóm => c/m được chia hết cho 4

b/ Nhóm lần lượt 3 số hạng liên tiếp thành 1 nhóm => c/m được chia hết cho 13

18 tháng 11 2015

a) Vì mỗi số đều chia hết cho 3 => A chia hết cho 3

b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)

A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)

A= 1.39+3.39+....+312.39

=> Vì 39 chia hết cho cho 3

=> ĐPCM

18 tháng 11 2015

a) bạn hỏi tính chất à

 

b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)

 

A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)

 

A= 1.39+3.39+....+312.39

 

=> Vì 39 chia hết cho cho 3

 

=> ĐPCM

21 tháng 6 2015

a) B = 3 + 32 + 3+ ... + 360 

=(3+32)+(33+34)+...+(359+360)

=3(1+3)+33(1+3)+...+359(1+3)

=(3+1)(3+33+...+359)

=4(3+33+...+359)

=>B chia hết cho 4

câu a trước nè **** caj làm típ

b) B=(3+32+33)+...+(358+359+360)

      =30(3+32+33)+...+357(358+359+360)

      =3+32+33(30+33+36+...+357)

      =39(30+33+36+...+357) chia hết cho 13

      Vậy B chia hết cho 13

**** cả 2 bài nha

Vì 3 lũy thừa liên tiếp từ lũy thừa đầu tiên cộng lại chia hết cho 3

Mà 60 chia hết cho 3 nên tổng này chia hết cho 3

23 tháng 10 2018

Đặt A = 31 + 32 + 33 +...+ 360 ( có 60 số hạng)

A = (31 + 3+ 33) + (34 + 35 + 36) + ...+ (358 + 359 + 360) ( có 20 nhóm số hạng)

A = 3.(1+3+32) + 34.(1+3+32) + ...+ 358.(1+3+32)

A = 3.13 + 34.13 + ...+ 358.13

A = 13.(3+34+...+358) chia hết cho 13

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

26 tháng 7 2017

b) A=(2+22+23)+(24+25+26)+...+(258+259+260)

=>A=2(1+2+22)+24(1+2+22)+...+258(1+2+22)

=>A=7(2+24+...+258)\(⋮\)7

a) Nhóm 2 số vào 1 nhóm rồi giải như trên.

c) Nhóm 4 số vào 1 nhóm rồi giải như trên.

21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi