Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em tính 3A đi
sao đok e lấy 3A-A là đc 2A
tiếp theo chéc e cx bik lm rồi nhỉ, tự lm cho quẹn
A=3+3^2+3^3+........+3^100
3A=3^2+3^3+........+3^101
3A-A=(3^2+3^3+........+3^101)-(3+3^2+3^3+........+3^100)
2A=3^101-3
suy ra: n=3^101-3+3=3^101
**** cho chị nhé! (bài này dễ, em cố gắng luyện nhìu nhé, lm hoài sẽ cok nhìu dạng nâng cao khó hơn)
Mần^o^
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
A=3+32+33+...+3100
=>3A=32+33+...+3100
=>3A=A=3101-3
=>2A=3101-3
=>2A+3=3101
=>n=101
Vậy số tự nhiên n bằng 101
Có A = 3 + 3\(^2\) + ....... + 3 \(^{100}\)
3A = 3\(^2\) + 3 \(^3\) + ...... + 3\(^{101}\)
Lấy 3A - A
\(\Rightarrow\) 2A = 3\(^{101}\) - 3
\(\Rightarrow\) 2A + 3 = 3\(^{101}\)
Mà theo bài ra, 2A + 3 = 3\(^n\)
\(\Rightarrow\) n = 101
3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
A = 3 + 32 + 33 + ... + 3100
⇔ 3A = 3( 3 + 32 + 33 + ... + 3100 )
⇔ 3A = 32 + 33 + ... + 3101
⇔ 2A = 3A - A
= 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )
= 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100
= 3101 - 3
2A + 3 = 3x+100
⇔ 3101 - 3 + 3 = 3x+100
⇔ 3101 = 3x+100
⇔ 101 = x + 100
⇔ x = 1
Vậy x = 1
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Ta có:
\(A=3+3^2+3^3+...+3^{100}\)
=> \(3A=3^2+3^3+3^4+...+3^{101}\)
=> \(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
<=> \(2A=3^{101}-3\)
Thay vào PT ta được: \(2A+3=3^n\)
\(\Rightarrow3^n=3^{101}-3+3=3^{101}\)
\(\Rightarrow n=101\)
Ta có A = 3 + 32 + 33 + ... + 3100
=> 3A = 32 + 33 + 34 + .... + 3101
Khi đó 3A - A = (32 + 33 + 34 + .... + 3101) - (3 + 32 + 33 + ... + 3100)
=> 2A = 3101 - 3
Lại có 2A + 3 = 3n
=> 3101 - 3 + 3 = 3n
=> 3101 = 3n
=> n = 101
Vậy n = 101