K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

Gọi d là ước chung của 2n+1 và 3n+2

Khi đó: 2n+1 chia hết cho d=>6n+3 chia hết cho d

           3n+2 chia hết cho d=>6n+4 chia hết cho d

=>(6n+4)-(6n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

Vậy phân số 2n+1/3n+2 là phân số tối giản

27 tháng 4 2016

Gọi ƯC(2n+1;3n+2)=d

Có:2n+1 chia hết d=>3(2n+1)=6n+3 chia hết d.  (1)

3n+2 chia hết d=>2(3n+2)=6n+4 chia hết d.    (2)

Từ (1);(2)​=>(6n+4)-(6n+3) chia hết d

=>6n+4-6n-3 chia hết d

=>1 chia hết d

=>d={+-1}

=ƯC(3n+2;2n+1)={+-1}

Vậy A là phân số tối giản

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

21 tháng 2 2016

a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )

=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d

=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d

=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d

=> 1 ⋮ d => d = 1 

Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản

21 tháng 2 2016

a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*) 
=> 15n + 1 chia hết cho d 
30n + 1 chia hết cho d 
=> 2(15n + 1) chia hết cho d 
1(30n + 1) chia hết cho d 
=> 30n + 2 chia hết cho d 
30n + 1 chia hết cho d 
=>(30n + 2) - (30n + 1) chia hết cho d 
=> 1 chia hết cho d 
Do d thuộc N* 
=> d=1 
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1 
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau 
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh) 
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian
4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

30 tháng 4 2021

mik nghĩ có người có thể giúp bn đó là chị goodle

Bài 16*:

                      Giải

Gọi ƯCLN(2n+1;3n=2)=d 

⇒2n+1 ⋮ d                  ⇒ 3.(2n+1) ⋮ d                ⇒6n+3 ⋮ d

   3n+2 ⋮ d                      2.(3n+2) ⋮ d                   6n+4 ⋮ d

⇒(6n+4)-(6n+3) ⋮ d

 ⇒     1 ⋮ d

⇒ d=1

Vậy 2n+1/3n+2 là phân số tối giản.

Chúc bạn học tốt!

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.