Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot4\)
= \(1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot\left[\left(k+3\right)-\left(k-1\right)\right]\)= 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + k*(k+1)*(k+2)*(k+3) - (k-1)*k*(k+1)*(k+2)
=k*(k+1)*(k+2)*(k+3)
chứng minh rằng:Nếu 3 số tự nhiên m, m+k,m+2k đều là các số nguyên tố lớn hơn 3,thì k chia hết cho 6
CMR: nếu 3 số tự nhiên m, m+k ,m+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn => k chia hết cho 2
m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2
+ Nêu m = 3p + 1:
xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại
xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại
=> k = 3a hay k chia hết cho 3
+ Nếu m = 3p + 2
xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại
xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại
=> k = 3a
Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)
Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn
=> k chia hết cho 2
m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2
+ Nêu m = 3p + 1:
xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại
xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại
=> k = 3a hay k chia hết cho 3
+ Nếu m = 3p + 2
xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại
xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại
=> k = 3a
Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)
LOL GAMER (*-*)
đáng lẽ n = 0 mới được chớ