\(x^5\) - \(13x^4\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

$a=2+\sqrt{5}$

$a-2=\sqrt{5}$

$a^2-4a+4=5\Leftrightarrow a^2-4a-1=0$

$p(a)=a^5-13a^4+7a^3-4a^2-6a$

$=a^3(a^2-4a-1)-9a^2(a^2-4a-1)-28a(a^2-4a-1)-125a^2-34a$

$=-125a^2-34a=-125(a^2-4a-1)-534a-125$

$=-534a-125=-534(2+\sqrt{5})-125=-1193-534\sqrt{5}$

 

6 tháng 4 2020

cảm ơn bạn

30 tháng 6 2017

xin lỗi mk ko thể giúp bn đc mk mới hc lp 7 thôi!

27 tháng 7 2018

a) Mình nghĩ là cos a = cot a . sin a chứ :))

CM nà :

Ta có : cot a =  \(\frac{AB}{AC}\)(1)

\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\)cot a =  \(\frac{cosa}{sina}\)

\(\Leftrightarrow\)cos a = cot a . sin a

b) Ta có : tan a =  \(\frac{AC}{AB}\)

Lại có : cot a =  \(\frac{AB}{AC}\)

\(\Rightarrow\)cos a . tan a =  \(\frac{AC.AB}{AB.AC}\)= 1 

Vậy ...

11 tháng 6 2018

a/ \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\left|3x\right|=2x+1\)

+) Với x ≥ 0 ta có:

\(3x=2x+1\Leftrightarrow x=1\left(tm\right)\)

+) Với x < 0 có:

\(3x=-2x-1\Leftrightarrow5x=-1\Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

Vậy pt có 2 nghiệm..............................

b/ \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)(t/m)

Vậy................................

c/ \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) Với x ≥ -3 ta có:

\(x+3=3x-1\Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

+) Với x < -3 có:

\(x+3=1-3x\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\left(ktm\right)\)

Vậy pt có 1 nghiệm x = 2

d/ \(\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Vậy.................

e/ \(x^2+2\sqrt{13x}=-13\)

ĐK : x ≥ 0

Ta thấy: \(x^2\ge0;2\sqrt{13x}\ge0\)

\(\Rightarrow x^2+2\sqrt{13x}\ge0\)

lại có: -13 < 0

=> Pt vô nghiệm

11 tháng 6 2018

Giải:

a) \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)

\(\Leftrightarrow3x=2x+1\)

\(\Leftrightarrow x=1\)

Vậy ...

b) \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow1-2x=5\)

\(\Leftrightarrow-2x=5-1\)

\(\Leftrightarrow x=-2\)

Vậy ...

c) \(\sqrt{x^2+6x+9}=3x+1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x+1\)

\(\Leftrightarrow x+3=3x+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy ...

d) \(\sqrt{x^4}=7\)

\(\Leftrightarrow x^2=7\)

\(\Leftrightarrow x=\pm\sqrt{7}\)

Vậy ...

e) \(x^2+2\sqrt{13}x=-13\) (Sửa đề)

\(\Leftrightarrow x^2+2\sqrt{13}x+13=0\)

\(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

\(\Leftrightarrow x+\sqrt{13}=0\)

\(\Leftrightarrow x=-\sqrt{13}\)

Vậy ...

6 tháng 4 2020

bạn giải theo delta nha :) mình vd một câu đó

\(1.x^2-11x+30=0\)

\(\Delta=\left(-11\right)^2-4.1.30=1>0\)

Do đó pt có 2 nghiệm phân biệt là:

\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)

6 tháng 4 2020

cảm ơn bạn

25 tháng 8 2017

1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)

   \(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)

   \(2x^2-2x=0\)

    \(2x\left(x-1\right)=0\)

            \(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)

    \(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)

   \(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)

  \(2\sqrt{x-1}=6\)

   \(\sqrt{x-1}=3=\sqrt{9}\)

    \(\Rightarrow x=10\)

   

   

25 tháng 8 2017

4)\(1-3x+\sqrt{x^2-6x+9}=0\)

   \(1-3x+\sqrt{\left(x-3\right)^2}=0\)

    \(1-3x+x-3=0\)

    \(x=-1\)

5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)

    \(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)

    \(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)

      \(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)

     \(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)

     \(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)

6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)

    \(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)

11 tháng 7 2016

a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)

Vì x > 5 nên x - 5 > 0 , x - 3 > 0

=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)

b) Điều kiện phải là \(2\le x< 3\)

 \(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)

Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)

=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)