Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 259 ( 1 + 2 )
A = 3 ( 2 + 23 + ... + 259 )
A chia hết cho 3 ( đpcm )
b) A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = ( 2 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 7 ( 2 + ... + 258 )
A chia hết cho 7 ( đpcm )
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 chia hết cho 7(đpcm)
a, A = 2 + 22 + 23 + 24 +....+ 260
A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)
A = 2.3 + 23.3 +...+ 259.3
A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)
A = 2 + 22 + 23+ 24+...+ 260
A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)
A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)
A = 2.7 + 24.7 +...+258.7
A = 7.(2 + 24 + ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)
A = 2 + 22 + 23 + 24 +...+ 260
A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)
A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)
A = 2.30 + ...+ 257. 30
A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)
\(a,A=7^{15}+7^{16}+7^{17}\)
\(A=7^{15}\left(1+7+7^2\right)\)
\(A=7^{15}.57\)
Ta có :
\(A=7^{15}.57⋮57\)
\(\Rightarrow A⋮57\)
\(b,B=2+2^2+2^3+....+2^{60}\)
\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(B=2.7+...+2^{58}.7\)
\(B=7\left(2+2^4+....+2^{58}\right)\)
Ta có :
\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(\Rightarrow B⋮7\)
A=(2+2^2)+...+(2^59+2^60)
=2(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59)
nên A chia hết cho 3.
A= (2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+2^4+..+2^58)
nên A chia hết cho 7
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6...
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)...
=15(2+2^5+...+2^57)
nên A chia hết cho 15
tick di ban
a A=\(2\)+\(2^2\)+\(2^3\)+\(2^4\)+...+\(2^{59}\)+\(2^{60}\)
A={\(2\)+\(2^2\)}+{\(2^3\)+\(2^4\)}+{\(2^5\)+\(2^6\)}+...+{\(2^{59}\)+\(2^{60}\)}
A=3.2+3.8+3.32+...
A=3.{2+8+32+...}
Suy ra:A chia het cho 3
b Làm tương tự như câu a nhưng ghép 3 số và tách thành tích của 7.k