Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
A=2+22+23+...+212
=(2+22)+(23+24)+...(211+212)
=2.(1+2)+23.(1+2)+...+211.(1+2)
=2.3+23.3+...+211.3
=3.(2+23+...+211)
=>A chia hết cho 3
A=2+22+23+...+212
=(2+22+23)+...+(210+211+212)
=2.(1+2+22)+....+210.(1+2+22)
=2.7+...+210.7
=7.(2+...+210)
=>A chia hết cho 7
A=2+22+23+...+212
2A=2(2+22+23+...+212)
2A=22+23+24+...+213
2A-A=(22+23+24+...+213) - (2+22+23+...+212)
A=213 - 2
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
a) A = 2 + 22 + 23 + ... + 212 (có 12 số; 10 chia hết cho 2)
A = (2 + 22) + (23 + 24) + ... + (211 + 212)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 211.(1 + 2)
A = 2.3 + 23.3 + ... + 211.3
A = 3.(2 + 23 + ... + 211)
Vì 2 + 23 + ... + 211 chia hết cho 2 => A chia hết cho 3.2 = 6 (đpcm)
b) bn xem lại đề -_-, A ko chia hết cho 12
Vì 2 + 23 + ... + 211 chia hết cho 2 nhưng không chia hết cho 4
b) Dựa vào câu a ta đã có được
A = 3.(2 + 23 + ... + 211)
Do các lũy thừa của 2 từ 22 trở đi đều chia hết cho 4
=> 23; 25; ...; 211 chia hết cho 4
Mà 2 không chia hết cho 4
=> 2 + 23 + ... + 211 không chia hết cho 4
=> A không chia hết cho 3.4 = 12