Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=2003\) vào A ta có:\(A=2003^{17}-2004.2003^{16}+2004.2003^{15}-2004.2003^{14}+...+2004.\left(2003-1\right)\)
\(=2003^{17}-\left(2003+1\right).2003^{16}+\left(2003+1\right).2003^{15}-\left(2003+1\right).2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2003^{17}-2003^{17}+2003^{16}-2003^{16}+2003^{15}-2003^{15}+2003^{14}-2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2004.2002=4012008\)
Ta có:
\(VT=75^{2005}-75^{2004}\)
\(VT=75^{2004}.75-75^{2004}.1\)
\(VT=75^{2004}\left(75-1\right)\)
\(VT=75^{2004}.74\)
\(VP=75^{2004}-75^{2003}\)
\(VP=75^{2003}.75-75^{2003}.1\)
\(VP=75^{2003}\left(75-1\right)\)
\(VP=75^{2003}.74\)
\(VT>VP\)
\(75^{2005}-75^{2004}=75^{2004}\cdot\left(75-1\right)=75^{2004}\cdot74\\ 75^{2004}-75^{2003}=75^{2003}\cdot\left(75-1\right)=75^{2003}\cdot74\\ \text{Vì }75^{2004}>75^{2003}\text{ nên }75^{2004}\cdot74>75^{2003}\cdot74\Leftrightarrow75^{2005}-75^{2004}>75^{2004}-75^{2003}\)
đăt 2004=x-1 ta đc
A(2005)=\(x^{2005}-\left(x-1\right)x^{2004}-\left(x-1\right)x^{2003}.....-\left(x-1\right)x^2-\left(x-1\right)x+14\)
=>A(2005)= \(x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-....-x^3+x^2-x^2+x+14\)
=>A(2005)=x+14=2005+14=2019
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(A=75\cdot\dfrac{4^{2005}-1}{3}+25\)
\(=25\left(4^{2005}-1+1\right)=100\cdot4^{2004}⋮100\)