Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có::
2016 có dạng 4k
Ta xét 10 số đầu
12016+22016+32016+42016+52016+62016+72016+82016+92016+102016=(....1)+(....6)+(...1)+(....6)+(....5)+(....6)+(....1)+(.....6)+(....1)+(....0)
=(....3)
Các nhóm sau cũng có tận cùng như vậy:
Ta chia A thành: 201 nhóm như sau:
(12016+22016+32016+42016+52016+62016+72016+82016+92016+102016)+(112016+122016+132016+142016+152016+162016+172016+182016+192016+202016)+.....+20112016+20122016+20132016+20142016+20152016+20162016=(....3)201+(...1)+(...6)+(....1)+(....6)+(...5)+(...6)
=(.....3)+(.....8)+(....1)+(....6)=(....8)
có chữ số tận cùng là 8 nên ko là số chính phương (ĐPCM)
Vậy A ko là số chính phương
a) 20152016 + 20152015 = 20152015 . 2015 + 20152015 = 20152015 . ( 2015 + 1 ) = 20152015 . 2016
20162016 = 20162015 . 2016
Vì 20152015 . 2016 < 20162015 . 2016 nên 20152016 + 20152015 < 20162016
b) 5299 < 5300 = ( 52 ) 150 = 25150
3501 = ( 33 ) 167 = 27167
Vì 25150 < 27167 nên 5299 < 3501
A = 2016 + 2016 2 + 2016 3 + 2016 4 + 2016 5 + 2016 6 + 2016 7 + 2016 8 + 2016 9 + 2016 10
A = 2016 . 1 + 2016 . 2016 + 20163 . 1 + 20163 . 2016 + 20165 . 1 + 20165 . 2016 + 20167 . 1 + 20167 . 2016 + 20169 . 1 + 20169 . 2016
A = 2016 . ( 1 + 2016 ) + 20163 . ( 1 + 2016 ) + 20165 . ( 1 + 2016 ) + 20167 . ( 1 + 2016 ) + 20169 . ( 1 + 2016 )
A = 2016 . 2017 + 20163 . 2017 + 20165 . 2017 + 20167 . 2017 + 20169 . 2017
A = ( 2016 + 20163 + 20165 + 20167 + 20169 ) . 2017 chia hết cho 2017
A= 2015+20152+20153+....+20152013+20152014+20152015
A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)
A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)
A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016
A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)
=> A chia hết cho 2016
=> đpcm : điều phải chứng minh
Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1
Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn
suy ra 2015^2016-1 chia hết cho 2
2015^2016 +1 chia hết cho 2
Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2
Hay A chia hết cho 4
2 Xét 2 STN liên tiếp
(2015^2016-1),2015^2016,(2015^2106+1)
Trong ba số tự nhiên sẽ có một số chia hết cho 3
Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3
Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3
mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3
MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen