Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)
\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)
\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)
a) N= { 0; 10; 8; -4; -2)
b) P= {0;+-10;+-8; +- 4;+-2}
Lưu ý:1. Mình ko giỏi toán nên mình chỉ làm câu 1 thôi chứ câu 2 mình ko chắc chắn nên ko đưa lên.
2. Ở THợp P bạn đừng ghi +- như mình mà hãy ghi 10; -10,...vì mình......lười quá í mà.
Cảm ơn đã xem câu trả lời của mình!!!!!
a, S = 1 + 2 - 3 - 4 +5 +6 - 7 - 8 +..... +1998 -1999 -2000 +2001
=> S = (1-3)+(2-4)+(5-7)+(6-8)+...+(1997-1999)+... + 2001 ( có 1000 hiệu = -2 )
=> S = -2 x 1000 + 2001 = 1
b, S = 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
=> S = (1-3)+(5-7)+(9-11)+....+(1997-1999) + 2001( có 500 hiệu = -2 )
=> S = -2 x 500 + 2001 = 1001
mình chỉ lmf dc 2 câu đầu thông cảm nha
B1
Số nhóm biểu thức nhò là
(2001+3)/2+1=1003(số)
mà giá trị mỗi biểu thức là 1
=> 1+1*1003=1004
Lời giải:
$A=(21-23)+(25-27)+....+(2021-2023)$
$=(-2)+(-2)+...+(-2)$
Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$
$A=501(-2)=-1002$
$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$
$=0+0+0+...+0=0$
a, 1 - 2 - 3 + 4 + 5 + 6 - 7 + ... + 1996 + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... +( 1993 - 1994 - 1995 + 1996 ) + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 0 + 2001
= 2001
b, 1 - 3 + 5 -7 + ...+ 2001 - 2003 + 2005
= ( 1 -3 ) + ( 5 - 7 ) + ... + ( 2001 - 2003 ) + 2005
= -2 + (-2 )+ ... + (-2) + 2005
Có 501 số ( - 2 )
= ( - 2 ) . 501 + 2005
= -1002 + 2005
= 1003
P/s : Tham khảo ( Chép đầu bài thôi cũng sai )