Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
ta có:
A= (13+23+33+...+1003)
B= 2(13+23+33+...+1003)
Vậy B/A = 2(13+23+33+...+1003) / (13+23+33+...+1003) = 2
8 ms đúng. Lấy 23:13=8 là ra (mẹo đấy bạn). Mk thi huyện vòng 15 gặp câu này ở Đỉnh núi trí tuệ mà. Kết quả chuẩn luôn
Bài 1:
\(A=1^3+2^3+...+99^3+100^3\)
\(=\left(1+2+...+100\right)^2\)
\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)
\(=5050^2=25502500\)
A= 13 + 23 + 33 + ... + 1003
= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101
= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )
= 5050 + 101989800
= 101994850
A = 2100- 299 + 298 - 297 + ... + 22 - 2
=> 2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
Khi đó 2A + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)
=> 3A = 2101 - 2
=> \(A=\frac{2^{201}-2}{3}\)
b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1
=> 3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Khi đó 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)
=> 4B = 3101 + 1
=> B = \(\frac{3^{101}+1}{4}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)
<=> \(3A=2^{101}-2\)
=> \(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)
<=> \(4A=3^{101}+1\)
=> \(A=\frac{3^{101}+1}{4}\)
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
B=23+43+63+....+2003
B=(1.2)3+(2.2)3+(2.3)3+....+(2.100)3
B=13.23+23.23+23.33+....+23.1003
B=23.(13+23+33+....+1003)
\(\Rightarrow\frac{B}{A}=\frac{2^3.\left(1^3+2^3+3^3+....+100^3\right)}{1^3+2^3+3^3+...+100^3}=2^3=8\)
Miu Ti làm vớ vẩn
A=.......ghi lại cái đề
B=..............ghi lại cái đề=2.A
=> B/A=2
Theo mình là vậy nhưng ko bít đùng hay ko!
\(B=2^3+4^3+6^3+....+200^3\)
\(=\left(1.2\right)^3+\left(2.2\right)^3+\left(2.3\right)^3+...+\left(2.100\right)^3\)
\(=1^3.2^3+2^3.2^3+2^3.3^3+....+2^3.100^3\)
\(=1^3.8+2^3.8+3^3.8+....+100^3.8\)
\(=8\left(1^3+2^3+3^3+....+100^3\right)\)
\(\Rightarrow\frac{B}{A}=\frac{8\left(1^3+2^3+3^3+....+100^3\right)}{1^3+2^3+3^3+....+100^3}=8\)