Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(-15)-23+(-85)-77=[(-15)+(-85)]-(23+77)=(-100)-100=-200
b,(-24) + 4 + (-6) + 26 =[(-24)+(-6)]+(4+26)=(-30)+30=0
c, 34 + 35 + 36 + 37 - 14 - 15 - 16 - 17 =(34-14)+(35-15)+(36-16)+(37-17)=20+20+20+20=80
a, Ta có :
\(A=\dfrac{15}{14}+\dfrac{16}{15}+\dfrac{17}{16}+\dfrac{18}{17}\)
\(\Leftrightarrow A=\left(1+\dfrac{1}{14}\right)+\left(1+\dfrac{1}{15}\right)+\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=\left(1+1+1+1\right)+\left(\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=4+\left(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}\right)\)
\(\Leftrightarrow A>4\)
b. \(B=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2019}\)
\(\Leftrightarrow B=\left(1-\dfrac{1}{2016}\right)+\left(1-\dfrac{1}{2017}\right)+\left(1-\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=\left(1+1+1\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=3-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B< 3\)
ta co:1/13<1/12
1/14<1/12
...
1/17<1/12
=>A<1/12.6=1/2
vay A<1/2
1. -x+20 = -(-15)-8+13
=> -x=15-8+13-20
=> -x=0
=> x=0
2. -(-10)+x=-13+(-9)+(-6)
=> 10+x=-13-9-6
=> x = -13-9-6-10
=> x = -38
3. 8-(-12)+10=-(-14)-x
=> 8+12+10=14-x
=> x = 14-8-12-10
=> x = -16
4. -(+12)+(-x)-(-3)=5-(-7)
=> -12-x+3=5+7
=> -x=5+7+12-3
=> -x=21
=> x=-21
5. 14-x+(-10)=-(-9)+(+15)
=> 14-x-10=9+15
=> -x=9+15-14+10
=> -x=20
=> x=-20
6. 12-(-17)+(-3)=-5+x
=> 12+17-3+5=x
=> x=31
7. x-(-19)-(+32)=14-(+16)
=> x+19-32=14-16
=> x=14-16+32-19
=> x=11
8. x-|-15|-|7|=-(-9)+|-5|
=> x-15-7=9+5
=> x=9+5+7+15
=> x=36
9. 15-x+17=13-(-21)
=> 15-x+17=13+21
=> -x=13+21-15-17
=> -x=2
=> x=-2
10. -|-5|-(-x)+4=3-(-25)
=> -5+x+4=3+25
=> x=3+25-4+5
=> x=29
A=\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+\(\frac{1}{15}\)+\(\frac{1}{16}\)+\(\frac{1}{17}\)
A< \(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)
A<6.\(\frac{1}{12}\)
A<\(\frac{1}{2}\)
Vậy A<\(\frac{1}{2}\)
Có :
A = 14/15 + 15/16 + 16/17 + 1 + 3/14
> (14/15+1/15)+(15/16+1/16)+(16/17+1/17)+1
= 1 + 1 + 1 + 1 = 4
=> A > 4
Tk mk nha